Suppr超能文献

带标签网络与无标签网络的熵

Entropy of labeled versus unlabeled networks.

作者信息

Paton Jeremy, Hartle Harrison, Stepanyants Huck, van der Hoorn Pim, Krioukov Dmitri

机构信息

Department of Physics, Northeastern University, Boston, Massachusetts 02115, USA.

Network Science Institute, Northeastern University, Boston, Massachusetts 02115, USA.

出版信息

Phys Rev E. 2022 Nov;106(5-1):054308. doi: 10.1103/PhysRevE.106.054308.

Abstract

The structure of a network is an unlabeled graph, yet graphs in most models of complex networks are labeled by meaningless random integers. Is the associated labeling noise always negligible, or can it overpower the network-structural signal? To address this question, we introduce and consider the sparse unlabeled versions of popular network models and compare their entropy against the original labeled versions. We show that labeled and unlabeled Erdős-Rényi graphs are entropically equivalent, even though their degree distributions are very different. The labeled and unlabeled versions of the configuration model may have different prefactors in their leading entropy terms, although this remains conjectural. Our main results are upper and lower bounds for the entropy of labeled and unlabeled one-dimensional random geometric graphs. We show that their unlabeled entropy is negligible in comparison with the labeled entropy. This means that in sparse networks the entropy of meaningless labeling may dominate the entropy of the network structure. The main implication of this result is that the common practice of using exchangeable models to reason about real-world networks with distinguishable nodes may introduce uncontrolled aberrations into conclusions made about these networks, suggesting a need for a thorough reexamination of the statistical foundations and key results of network science.

摘要

网络的结构是一个无标签图,但在大多数复杂网络模型中的图是由无意义的随机整数标记的。相关的标记噪声总是可以忽略不计,还是会掩盖网络结构信号呢?为了解决这个问题,我们引入并考虑了流行网络模型的稀疏无标签版本,并将它们的熵与原始有标签版本进行比较。我们表明,有标签和无标签的厄多斯 - 雷尼图在熵方面是等效的,尽管它们的度分布非常不同。配置模型的有标签和无标签版本在其主导熵项中可能有不同的前置因子,尽管这仍是推测性的。我们的主要结果是有标签和无标签的一维随机几何图的熵的上下界。我们表明,与有标签熵相比,它们的无标签熵可以忽略不计。这意味着在稀疏网络中,无意义标记的熵可能主导网络结构的熵。这一结果的主要含义是,使用可交换模型来推断具有可区分节点现实世界网络的常见做法,可能会在关于这些网络的结论中引入无法控制的偏差,这表明需要对网络科学的统计基础和关键结果进行彻底重新审视。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验