Suppr超能文献

5G和6G中混合延迟流量的信息论视角

An Information-Theoretic View of Mixed-Delay Traffic in 5G and 6G.

作者信息

Nikbakht Homa, Wigger Michèle, Egan Malcolm, Shamai Shitz Shlomo, Gorce Jean-Marie, Poor H Vincent

机构信息

INRIA, INSA, CITI, Université de Lyon, EA3720, 69621 Villeurbanne, France.

LTCI, Télécom Paris, Institut Polytechnique de Paris, 91120 Palaiseau, France.

出版信息

Entropy (Basel). 2022 Apr 30;24(5):637. doi: 10.3390/e24050637.

Abstract

Fifth generation mobile communication systems (5G) have to accommodate both Ultra-Reliable Low-Latency Communication (URLLC) and enhanced Mobile Broadband (eMBB) services. While eMBB applications support high data rates, URLLC services aim at guaranteeing low-latencies and high-reliabilities. eMBB and URLLC services are scheduled on the same frequency band, where the different latency requirements of the communications render their coexistence challenging. In this survey, we review, from an information theoretic perspective, coding schemes that simultaneously accommodate URLLC and eMBB transmissions and show that they outperform traditional scheduling approaches. Various communication scenarios are considered, including point-to-point channels, broadcast channels, interference networks, cellular models, and cloud radio access networks (C-RANs). The main focus is on the set of rate pairs that can simultaneously be achieved for URLLC and eMBB messages, which captures well the tension between the two types of communications. We also discuss finite-blocklength results where the measure of interest is the set of error probability pairs that can simultaneously be achieved in the two communication regimes.

摘要

第五代移动通信系统(5G)必须兼顾超可靠低延迟通信(URLLC)和增强型移动宽带(eMBB)服务。虽然eMBB应用支持高数据速率,但URLLC服务旨在保证低延迟和高可靠性。eMBB和URLLC服务在同一频段上进行调度,通信中不同的延迟要求使得它们的共存具有挑战性。在本次综述中,我们从信息论的角度回顾了同时兼顾URLLC和eMBB传输的编码方案,并表明它们优于传统的调度方法。我们考虑了各种通信场景,包括点对点信道、广播信道、干扰网络、蜂窝模型和云无线接入网络(C-RAN)。主要关注点是URLLC和eMBB消息能够同时实现的速率对集合,这很好地体现了两种通信类型之间的矛盾关系。我们还讨论了有限码长结果,其中关注的度量是在两种通信模式下能够同时实现的错误概率对集合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/66b3/9141450/0c4b04ac2452/entropy-24-00637-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验