Suppr超能文献

一种基于对立学习的交叉熵优化算法求解最短公共超序列问题

An Opposition-Based Learning CRO Algorithm for Solving the Shortest Common Supersequence Problem.

作者信息

Luo Fei, Chen Cheng, Fuentes Joel, Li Yong, Ding Weichao

机构信息

School of Information Science and Engineering, East China University of Science and Technology, Shanghai 200237, China.

Department of Computer Science and Information Technologies, Universidad del Bío-Bío, Chillán 3780000, Chile.

出版信息

Entropy (Basel). 2022 May 3;24(5):641. doi: 10.3390/e24050641.

Abstract

As a non-deterministic polynomial hard (NP-hard) problem, the shortest common supersequence (SCS) problem is normally solved by heuristic or metaheuristic algorithms. One type of metaheuristic algorithms that has relatively good performance for solving SCS problems is the chemical reaction optimization (CRO) algorithm. Several CRO-based proposals exist; however, they face such problems as unstable molecular population quality, uneven distribution, and local optimum (premature) solutions. To overcome these problems, we propose a new approach for the search mechanism of CRO-based algorithms. It combines the opposition-based learning (OBL) mechanism with the previously studied improved chemical reaction optimization (IMCRO) algorithm. This upgraded version is dubbed OBLIMCRO. In its initialization phase, the opposite population is constructed from a random population based on OBL; then, the initial population is generated by selecting molecules with the lowest potential energy from the random and opposite populations. In the iterative phase, reaction operators create new molecules, where the final population update is performed. Experiments show that the average running time of OBLIMCRO is more than 50% less than the average running time of CRO_SCS and its baseline algorithm, IMCRO, for the desoxyribonucleic acid (DNA) and protein datasets.

摘要

作为一个非确定性多项式困难(NP-hard)问题,最短公共超序列(SCS)问题通常通过启发式或元启发式算法来解决。在解决SCS问题方面具有相对良好性能的一类元启发式算法是化学反应优化(CRO)算法。存在几种基于CRO的方案;然而,它们面临分子群体质量不稳定、分布不均以及局部最优(早熟)解等问题。为了克服这些问题,我们提出了一种基于CRO算法搜索机制的新方法。它将基于对立的学习(OBL)机制与先前研究的改进化学反应优化(IMCRO)算法相结合。这个升级版本被称为OBLIMCRO。在其初始化阶段,基于OBL从随机群体构建对立群体;然后,通过从随机群体和对立群体中选择势能最低的分子来生成初始群体。在迭代阶段,反应算子创建新分子,在其中执行最终的群体更新。实验表明,对于脱氧核糖核酸(DNA)和蛋白质数据集,OBLIMCRO的平均运行时间比CRO_SCS及其基线算法IMCRO的平均运行时间少50%以上。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/0f6b/9141143/020bd4d79b37/entropy-24-00641-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验