Department of General, Inorganic and Theoretical Chemistry, Center for Molecular Biosciences Innsbruck (CMBI), University of Innsbruck, Innrain 80-82, A-6020 Innsbruck, Austria.
Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, 111 T.W. Alexander Dr. MD-MR-01, Research Triangle Park, NC 27709, USA.
Int J Mol Sci. 2022 May 12;23(10):5419. doi: 10.3390/ijms23105419.
Variable domains of camelid antibodies (so-called nanobodies or VH) are the smallest antibody fragments that retain complete functionality and therapeutic potential. Understanding of the nanobody-binding interface has become a pre-requisite for rational antibody design and engineering. The nanobody-binding interface consists of up to three hypervariable loops, known as the CDR loops. Here, we structurally and dynamically characterize the conformational diversity of an anti-GFP-binding nanobody by using molecular dynamics simulations in combination with experimentally derived data from nuclear magnetic resonance (NMR) spectroscopy. The NMR data contain both structural and dynamic information resolved at various timescales, which allows an assessment of the quality of protein MD simulations. Thus, in this study, we compared the ensembles for the anti-GFP-binding nanobody obtained from MD simulations with results from NMR. We find excellent agreement of the NOE-derived distance maps obtained from NMR and MD simulations and observe similar conformational spaces for the simulations with and without NOE time-averaged restraints. We also compare the measured and calculated order parameters and find generally good agreement for the motions observed in the ps-ns timescale, in particular for the CDR3 loop. Understanding of the CDR3 loop dynamics is especially critical for nanobodies, as this loop is typically critical for antigen recognition.
骆驼科抗体(所谓的纳米抗体或 VH)的可变域是保留完整功能和治疗潜力的最小抗体片段。对纳米抗体结合界面的理解已成为合理抗体设计和工程的前提条件。纳米抗体结合界面由多达三个超变环组成,称为 CDR 环。在这里,我们通过使用分子动力学模拟结合从核磁共振(NMR)光谱获得的实验数据,对 GFP 结合纳米抗体的构象多样性进行了结构和动态表征。NMR 数据包含在不同时间尺度上解析的结构和动态信息,这允许评估蛋白质 MD 模拟的质量。因此,在这项研究中,我们将从 MD 模拟获得的 GFP 结合纳米抗体的集合与 NMR 结果进行了比较。我们发现从 NMR 和 MD 模拟获得的 NOE 衍生距离图之间具有极好的一致性,并观察到在没有和有 NOE 时间平均约束的模拟中具有相似的构象空间。我们还比较了测量和计算的顺序参数,并且发现对于 ps-ns 时间尺度上观察到的运动,通常具有很好的一致性,特别是对于 CDR3 环。对 CDR3 环动力学的理解对于纳米抗体尤其重要,因为该环通常是抗原识别的关键。