Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, United Kingdom.
Proteins. 2018 Jul;86(7):697-706. doi: 10.1002/prot.25497. Epub 2018 Apr 15.
Nanobodies are a class of antigen-binding protein derived from camelids that achieve comparable binding affinities and specificities to classical antibodies, despite comprising only a single 15 kDa variable domain. Their reduced size makes them an exciting target molecule with which we can explore the molecular code that underpins binding specificity-how is such high specificity achieved? Here, we use a novel dataset of 90 nonredundant, protein-binding nanobodies with antigen-bound crystal structures to address this question. To provide a baseline for comparison we construct an analogous set of classical antibodies, allowing us to probe how nanobodies achieve high specificity binding with a dramatically reduced sequence space. Our analysis reveals that nanobodies do not diversify their framework region to compensate for the loss of the VL domain. In addition to the previously reported increase in H3 loop length, we find that nanobodies create diversity by drawing their paratope regions from a significantly larger set of aligned sequence positions, and by exhibiting greater structural variation in their H1 and H2 loops.
纳米抗体是一类源自骆驼科动物的抗原结合蛋白,尽管只包含一个 15 kDa 的可变结构域,但它们具有可与经典抗体相媲美的结合亲和力和特异性。它们的体积较小,因此成为一个令人兴奋的目标分子,我们可以通过它来探索构成结合特异性的分子密码——如此高的特异性是如何实现的?在这里,我们使用了 90 个具有抗原结合晶体结构的非冗余、蛋白结合纳米抗体的新型数据集来解决这个问题。为了提供一个比较的基准,我们构建了一个类似的经典抗体集,使我们能够探究纳米抗体如何在序列空间显著减少的情况下实现高特异性结合。我们的分析表明,纳米抗体并没有通过多样化其框架区域来弥补 VL 结构域的缺失。除了先前报道的 H3 环长度增加之外,我们还发现纳米抗体通过从更大的对齐序列位置集合中抽取其变构区,以及通过在 H1 和 H2 环中表现出更大的结构变异性,来创造多样性。