Suppr超能文献

基于最小误差替换的电导感知量化,用于神经计算系统中的非线性电导状态容差

Conductance-Aware Quantization Based on Minimum Error Substitution for Non-Linear-Conductance-State Tolerance in Neural Computing Systems.

作者信息

Huang Chenglong, Xu Nuo, Wang Wenqing, Hu Yihong, Fang Liang

机构信息

Institute for Quantum Information & State Key Laboratory of High Performance Computing, National University of Defense Technology, Changsha 410073, China.

College of Computer, National University of Defense Technology, Changsha 410073, China.

出版信息

Micromachines (Basel). 2022 Apr 24;13(5):667. doi: 10.3390/mi13050667.

Abstract

Emerging resistive random-access memory (ReRAM) has demonstrated great potential in the achievement of the in-memory computing paradigm to overcome the well-known "memory wall" in current von Neumann architecture. The ReRAM crossbar array (RCA) is a promising circuit structure to accelerate the vital multiplication-and-accumulation (MAC) operations in deep neural networks (DNN). However, due to the nonlinear distribution of conductance levels in ReRAM, a large deviation exists in the mapping process when the trained weights that are quantized by linear relationships are directly mapped to the nonlinear conductance values from the realistic ReRAM device. This deviation degrades the inference accuracy of the RCA-based DNN. In this paper, we propose a minimum error substitution based on a conductance-aware quantization method to eliminate the deviation in the mapping process from the weights to the actual conductance values. The method is suitable for multiple ReRAM devices with different non-linear conductance distribution and is also immune to the device variation. The simulation results on LeNet5, AlexNet and VGG16 demonstrate that this method can vastly rescue the accuracy degradation from the non-linear resistance distribution of ReRAM devices compared to the linear quantization method.

摘要

新兴的电阻式随机存取存储器(ReRAM)在实现内存计算范式以克服当前冯·诺依曼架构中众所周知的“内存墙”方面已展现出巨大潜力。ReRAM交叉阵列(RCA)是一种很有前景的电路结构,可加速深度神经网络(DNN)中至关重要的乘法累加(MAC)运算。然而,由于ReRAM中电导水平的非线性分布,当通过线性关系量化的训练权重直接映射到实际ReRAM器件的非线性电导值时,映射过程中会存在较大偏差。这种偏差会降低基于RCA的DNN的推理精度。在本文中,我们提出了一种基于电导感知量化方法的最小误差替换方法,以消除从权重到实际电导值的映射过程中的偏差。该方法适用于具有不同非线性电导分布的多种ReRAM器件,并且对器件变化具有免疫能力。在LeNet5、AlexNet和VGG16上的仿真结果表明,与线性量化方法相比,该方法可以极大地挽救因ReRAM器件的非线性电阻分布导致的精度下降。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1273/9143747/347f321802f7/micromachines-13-00667-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验