Suppr超能文献

使用在线训练神经网络对线性执行器进行定位的自整定控制。

Self-Tuning Control Using an Online-Trained Neural Network to Position a Linear Actuator.

作者信息

Hernandez-Alvarado Rodrigo, Rodriguez-Abreo Omar, Garcia-Guendulain Juan Manuel, Hernandez-Diaz Teresa

机构信息

Industrial Technologies Division, Universidad Politecnica de Queretaro, Carretera Estatal 420, El Marques 76240, Mexico.

Center for Engineering and Industrial Development, Av. Playa Pie de la Cuesta No. 702, Queretaro 76125, Mexico.

出版信息

Micromachines (Basel). 2022 Apr 29;13(5):696. doi: 10.3390/mi13050696.

Abstract

Linear actuators are widely used in all kinds of industrial applications due to being devices that convert the rotation motion of motors into linear or straight traction/thrust motion. These actuators are ideal for all types of applications where inclination, lifting, traction, or thrust is required under heavy loads, such as wheelchairs, medical beds, and lifting tables. Due to the remarkable ability to exert forces and good precision, they are used classic control systems and controls of high-order. Still, they present difficulties in changing their dynamics and are designed for a range of disturbances. Therefore, in this paper, we present the study of an electric linear actuator. We analyze the positioning in real-time and attack the sudden changes of loads and limitation range by the control. It uses a general-purpose control with self-tuning gains, which can deal with the essential uncertainties of the actuator and suppress disturbances, as they can change their weights to interact with changing systems. The neural network combined with PID control compensates the simplicity of this type of control with artificial intelligence, making it robust to drastic changes in its parameters. Unlike other similar works, this research proposes an online training network with an advantage over typical neural self-adjustment systems. All of this can also be dispensed with the engine model for its operation. The results obtained show a decrease of 42% in the root mean square error (RMSE) during trajectory tracking and saving in energy consumption by 25%. The results were obtained both in simulation and in real tests.

摘要

线性执行器由于能够将电机的旋转运动转换为线性或直线牵引/推力运动,因此广泛应用于各种工业领域。这些执行器适用于所有需要在重负载下进行倾斜、提升、牵引或推力的应用类型,如轮椅、医疗床和升降台。由于其出色的力施加能力和良好的精度,它们被用于经典控制系统和高阶控制。然而,它们在改变动力学方面存在困难,并且是为一系列干扰而设计的。因此,在本文中,我们介绍了对电动线性执行器的研究。我们分析实时定位,并通过控制应对负载的突然变化和限制范围。它使用具有自整定增益的通用控制,能够处理执行器的基本不确定性并抑制干扰,因为它们可以改变权重以与变化的系统相互作用。神经网络与PID控制相结合,用人工智能弥补了这类控制的简单性,使其对参数的剧烈变化具有鲁棒性。与其他类似工作不同,本研究提出了一种在线训练网络,它比典型的神经自调整系统具有优势。其运行也无需发动机模型。所获得的结果表明,在轨迹跟踪期间均方根误差(RMSE)降低了42%,能耗节省了25%。这些结果在模拟和实际测试中均得到了验证。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/3f70/9144629/9ddc2a89cef8/micromachines-13-00696-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验