Suppr超能文献

营养风险评估评分可有效预测重症 COVID-19 患者的死亡率。

Nutritional Risk Assessment Scores Effectively Predict Mortality in Critically Ill Patients with Severe COVID-19.

机构信息

Intensive Care Unit, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania.

Faculty of Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania.

出版信息

Nutrients. 2022 May 18;14(10):2105. doi: 10.3390/nu14102105.

Abstract

BACKGROUND

Malnutrition predicts a worse outcome for critically ill patients. However, quick, easy-to-use nutritional risk assessment tools have not been adequately validated.

AIMS AND METHODS

The study aimed to evaluate the role of four biological nutritional risk assessment instruments (the Prognostic Nutritional Index-PNI, the Controlling Nutritional Status Score-CONUT, the Nutrition Risk in Critically Ill-NUTRIC, and the modified NUTRIC-mNUTRIC), along with CT-derived fat tissue and muscle mass measurements in predicting in-hospital mortality in a consecutive series of 90 patients hospitalized in the intensive care unit for COVID-19-associated ARDS.

RESULTS

In-hospital mortality was 46.7% ( = 42/90). Non-survivors had a significantly higher nutritional risk, as expressed by all four scores. All scores were independent predictors of mortality on the multivariate regression models. PNI had the best discriminative capabilities for mortality, with an area under the curve (AUC) of 0.77 for a cut-off value of 28.05. All scores had an AUC above 0.72. The volume of fat tissue and muscle mass were not associated with increased mortality risk.

CONCLUSIONS

PNI, CONUT, NUTRIC, and mNUTRIC are valuable nutritional risk assessment tools that can accurately predict mortality in critically ill patients with COVID-19-associated ARDS.

摘要

背景

营养不良预示着危重症患者的预后更差。然而,快速、易用的营养风险评估工具尚未得到充分验证。

目的和方法

本研究旨在评估四种生物营养风险评估工具(预后营养指数-PNI、控制营养状态评分-CONUT、重症患者营养风险-NUTRIC 和改良 NUTRIC-mNUTRIC),以及 CT 衍生的脂肪组织和肌肉质量测量在预测因 COVID-19 相关 ARDS 而住院的 90 例连续 ICU 患者住院期间死亡率中的作用。

结果

住院死亡率为 46.7%(=42/90)。非幸存者的营养风险明显更高,所有四个评分都显示出这一点。所有评分在多变量回归模型中都是死亡率的独立预测因子。PNI 对死亡率具有最佳的区分能力,截断值为 28.05 时,曲线下面积(AUC)为 0.77。所有评分的 AUC 均高于 0.72。脂肪组织和肌肉质量的体积与死亡率风险增加无关。

结论

PNI、CONUT、NUTRIC 和 mNUTRIC 是有价值的营养风险评估工具,可准确预测 COVID-19 相关 ARDS 危重症患者的死亡率。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9b76/9144143/3e636e312a40/nutrients-14-02105-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验