Zhao Chaoyue, Huang Hui, Wang Lihong, Zhang Guoping, Lu Guanyu, Yu Han, Lu Guanghao, Han Yulai, Qiu Mingxia, Li Shunpu, Zhang Guangye
College of New Materials and New Energies, Shenzhen Technology University, Shenzhen 518118, China.
Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an 710054, China.
Polymers (Basel). 2022 May 18;14(10):2058. doi: 10.3390/polym14102058.
In this work, we apply the sequential processing (SqP) method to address the relatively low electron mobility in recent all-polymer solar cells (all-PSCs) based on the polymerized small-molecule acceptor (PSMA). Compared to the blend-casting (BC) method, all-PSCs composed of PM6/PY-IT via the SqP method show boosted electron mobility and a more balanced charge carrier transport, which increases the FF of the SqP device and compensates for the short-circuit current loss, rendering comparable overall performance with the BC device. Through film-depth-dependent light absorption spectroscopy, we analyze the sub-layer absorption and exciton generation rate in the vertical direction of the device, and discuss the effect of the increased electron mobility on device performance, accordingly.
在本工作中,我们应用顺序处理(SqP)方法来解决基于聚合小分子受体(PSMA)的近期全聚合物太阳能电池(全PSC)中相对较低的电子迁移率问题。与共混浇铸(BC)方法相比,通过SqP方法由PM6/PY-IT组成的全PSC显示出增强的电子迁移率和更平衡的电荷载流子传输,这提高了SqP器件的填充因子(FF)并补偿了短路电流损失,使SqP器件具有与BC器件相当的整体性能。通过依赖于薄膜深度的光吸收光谱,我们分析了器件垂直方向上的子层吸收和激子产生速率,并相应地讨论了电子迁移率增加对器件性能的影响。