Suppr超能文献

多层印刷电路螺旋线圈电感的不确定性分析

Analysis of Uncertainties in Inductance of Multi-Layered Printed-Circuit Spiral Coils.

作者信息

Noh Myounggyu, Bui Thien Vuong, Le Khanh Tan, Park Young-Woo

机构信息

Department of Mechatronics Engineering, Chungnam National University, Daejeon 34134, Korea.

出版信息

Sensors (Basel). 2022 May 18;22(10):3815. doi: 10.3390/s22103815.

Abstract

Eddy-current sensors are widely used for precise displacement sensing and non-destructive testing. Application of printed-circuit board (PCB) technology for manufacturing sensor coils may reduce the cost of the sensor and enhance the performance by ensuring consistency. However, these prospects depend on the uniformness of the sensor coil. Inductance measurements of sample coils reveal rather considerable variations. In this paper, we investigate the sources of these variations. Through image analysis of cut-away cross-sections of sensor coils, four factors that contribute to the inductance variations are identified: the distance between layers, the distance between tracings, cross-sectional areas, and misalignment among layers. By using and extending existing method of calculating inductance of spiral coils, the inductance distributions are obtained when these factors are randomly varied. A sensitivity analysis shows that the inductance uncertainty is most affected by the uniformness of the spacings between coil traces and the distances between layers. Improvements in PCB manufacturing process can help to reduce the uncertainty in inductance.

摘要

涡流传感器广泛应用于精确位移传感和无损检测。采用印刷电路板(PCB)技术制造传感器线圈,可通过确保一致性来降低传感器成本并提高性能。然而,这些前景取决于传感器线圈的均匀性。对样品线圈的电感测量显示出相当大的变化。在本文中,我们研究了这些变化的来源。通过对传感器线圈剖切横截面的图像分析,确定了导致电感变化的四个因素:层间距离、走线间距、横截面积和层间错位。通过使用并扩展现有的计算螺旋线圈电感的方法,当这些因素随机变化时,可获得电感分布。灵敏度分析表明,电感不确定性受线圈走线间距和层间距离均匀性的影响最大。改进印刷电路板制造工艺有助于降低电感的不确定性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e7ea/9147698/8ea5f1d0f401/sensors-22-03815-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验