Suppr超能文献

一种使用非接触测量方法“可视化”体-座界面温度的单例可行性研究。

A Single Subject, Feasibility Study of Using a Non-Contact Measurement to "Visualize" Temperature at Body-Seat Interface.

机构信息

The Higher Educational Key Laboratory for Measuring and Control Technology and Instrumentations of Heilongjiang Province, Harbin University of Science and Technology, Harbin 150080, China.

Murdoch University Chiropractic Clinic, Murdoch University, Murdoch 6150, Australia.

出版信息

Sensors (Basel). 2022 May 23;22(10):3941. doi: 10.3390/s22103941.

Abstract

Measuring temperature changes at the body-seat interface has been drawing increased attention from both industrial and scientific fields, due to the increasingly sedentary nature from daily leisure activity to routine work. Although contact measurement is considered the gold standard, it can affect the local micro-environment and the perception of sitting comfort. A non-contact temperature measurement system was developed to determine the interface temperature using data gathered unobtrusively and continuously from an infrared sensor (IRs). System performance was evaluated regarding linearity, hysteresis, reliability and accuracy. Then a healthy participant sat for an hour on low/intermediate density foams with thickness varying from 0.5−8 cm while body-seat interface temperature was measured simultaneously using a temperature sensor (contact) and an IRs (non-contact). IRs data were filtered with empirical mode decomposition and fractal scaling indices before a data-driven artificial neural network was utilized to estimate the contact surface temperature. A strong correlation existed between non-contact and contact temperature measurement (ρ > 0.85) and the estimation results showed a low root mean square error (RMSE) (<0.07 for low density foam and <0.16 for intermediate density foam) and high Nash-Sutcliff efficiency (NSE) values (≈1 for both types of foam materials).

摘要

测量人体与座椅接触面的温度变化已引起工业和科学界越来越多的关注,因为人们在日常生活中的休闲活动和日常工作中越来越久坐不动。尽管接触式测量被认为是金标准,但它会影响局部微环境和坐姿舒适度的感知。本文开发了一种非接触式温度测量系统,使用红外传感器(IRs)非干扰且连续地采集数据来确定界面温度。评估了系统的线性度、滞后、可靠性和准确性。然后,让一位健康的参与者在低/中密度泡沫上坐一个小时,泡沫的厚度从 0.5 到 8 厘米不等,同时使用温度传感器(接触式)和 IRs(非接触式)同时测量体-座界面温度。IRs 数据使用经验模态分解和分形标度指数进行过滤,然后使用数据驱动的人工神经网络来估计接触表面温度。非接触式和接触式温度测量之间存在很强的相关性(ρ>0.85),估计结果显示出较低的均方根误差(RMSE)(低密度泡沫<0.07,中密度泡沫<0.16)和较高的纳什-苏特克里夫效率(NSE)值(两种泡沫材料均接近 1)。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1c75/9143088/5559f371f4ce/sensors-22-03941-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验