Key Lab of Modern Toxicology (NJMU), Ministry of Education; Department of Toxicology, School of Public Health, Nanjing Medical University, 818 Tianyuan East Road, Nanjing, Jiangsu 211166, China.
Wujin District Center for Disease Prevention and Control, Changzhou, Jiangsu 213100, China.
Oxid Med Cell Longev. 2022 May 18;2022:3344569. doi: 10.1155/2022/3344569. eCollection 2022.
Methamphetamine (Meth), a central nervous system (CNS) stimulant with strong neurotoxicity, causes progressive cognitive impairment with characterized neurodegenerative changes. However, the mechanism underlying Meth-induced pathological changes remains poorly understood. In the current study, Meth elicited a striking accumulation of the pathological proteins hyperphosphorylated tau (p-tau) and amyloid beta (A) in primary hippocampal neurons, while the activation of autophagy dramatically ameliorated the high levels of these pathological proteins. Interestingly, after the Meth treatment, A was massively deposited in autophagosomes, which were remarkably trapped in early endosomes. Mechanistically, syntaxin 17 (Stx17), a key soluble n-ethylmaleimide-sensitive fusion protein (NSF) attachment protein receptor (SNARE) protein responsible for autophagosome and mature endosome/lysosome fusion, was significantly downregulated and hindered in combination with autophagosomes. Notably, adenovirus overexpression of Stx17 in primary neurons facilitated autophagosome-mature endosome/lysosome fusion, which dramatically reversed the Meth-induced increases in the levels of p-tau, A, beta-secretase (Bace-1), and C-terminal fragments (CTFs). Immunofluorescence assays showed that Stx17 retarded the Meth-induced A, p-tau, and Bace-1 accumulation in autophagosomes and facilitated the translocation of these pathological proteins to lysosomes, which indicated the importance of Stx17 via enhanced autophagosome-mature endosome/lysosome fusion. Therefore, the current study reveals a novel mechanism involving Meth-induced high levels of pathological proteins in neurons. Targeting Stx17 may provide a novel therapeutic strategy for Meth-induced neurodegenerative changes.
甲基苯丙胺(Meth)是一种具有强烈神经毒性的中枢神经系统(CNS)兴奋剂,会导致进行性认知障碍,并伴有神经退行性变化。然而,Meth 诱导的病理变化的机制仍不清楚。在本研究中,Meth 可在原代海马神经元中引起显著的病理蛋白过度磷酸化 tau(p-tau)和淀粉样β(A)的积累,而自噬的激活则显著改善了这些病理蛋白的高水平。有趣的是,Meth 处理后,A 大量沉积在自噬体中,自噬体明显被困在早期内体中。在机制上,负责自噬体与成熟内体/溶酶体融合的关键可溶性 N-乙基马来酰亚胺敏感融合蛋白(NSF)附着蛋白受体(SNARE)蛋白突触融合蛋白 17(Stx17)显著下调,并与自噬体结合受到阻碍。值得注意的是,腺病毒过表达 Stx17 可促进原代神经元中的自噬体-成熟内体/溶酶体融合,从而显著逆转 Meth 诱导的 p-tau、A、β-分泌酶(Bace-1)和 C 端片段(CTFs)水平的增加。免疫荧光分析表明,Stx17 可延迟 Meth 诱导的 A、p-tau 和 Bace-1 在自噬体中的积累,并促进这些病理蛋白向溶酶体的易位,这表明通过增强自噬体-成熟内体/溶酶体融合,Stx17 很重要。因此,本研究揭示了一种新的机制,涉及神经元中 Meth 诱导的高水平病理蛋白。靶向 Stx17 可能为 Meth 诱导的神经退行性变化提供一种新的治疗策略。