Suppr超能文献

一种利用数据密集型计算和DINEOF从卫星图像中填补缺失数据的方法。

An approach to fill in missing data from satellite imagery using data-intensive computing and DINEOF.

作者信息

Lomelí-Huerta José Roberto, Rivera-Caicedo Juan Pablo, De-la-Torre Miguel, Acevedo-Juárez Brenda, Cepeda-Morales Jushiro, Avila-George Himer

机构信息

Departamento de Ciencias Computacionales e Ingenierías, Universidad de Guadalajara, Ameca, Jalisco, México.

CONACYT-UAN, Secretaría de Investigación Posgrado, Universidad Autónoma de Nayarit, Tepic, Nayarit, Mexico.

出版信息

PeerJ Comput Sci. 2022 May 13;8:e979. doi: 10.7717/peerj-cs.979. eCollection 2022.

Abstract

This paper proposes an approach to fill in missing data from satellite images using data-intensive computing platforms. The proposed approach merges satellite imagery from diverse sources to reduce the impact of the holes in images that result from acquisition conditions: occlusion, the satellite trajectory, sunlight, among others. The amount of computation effort derived from the use of large high-resolution images is addressed by data-intensive computing techniques that assume an underlying cluster architecture. As a start, satellite data from the region of study are automatically downloaded; then, data from different sensors are corrected and merged to obtain an orthomosaic; finally, the orthomosaic is split into user-defined segments to fill in missing data, and filled segments are assembled to produce an orthomosaic with a reduced amount of missing data. As a proof of concept, the proposed data-intensive approach was implemented to study the concentration of chlorophyll at the Mexican oceans by merging data from MODIS-TERRA, MODIS-AQUA, VIIRS-SNPP, and VIIRS-JPSS-1 sensors. The results revealed that the proposed approach produces results that are similar to state-of-the-art approaches to estimate chlorophyll concentration but avoid memory overflow with large images. Visual and statistical comparison of the resulting images revealed that the proposed approach provides a more accurate estimation of chlorophyll concentration when compared to the mean of pixels method alone.

摘要

本文提出了一种利用数据密集型计算平台填补卫星图像中缺失数据的方法。所提出的方法合并来自不同来源的卫星图像,以减少因采集条件(遮挡、卫星轨迹、阳光等)导致的图像空洞的影响。使用大型高分辨率图像所产生的计算量通过假设底层集群架构的数据密集型计算技术来解决。首先,自动下载研究区域的卫星数据;然后,对来自不同传感器的数据进行校正和合并以获得正射镶嵌图;最后,将正射镶嵌图分割为用户定义的片段以填补缺失数据,并将填充后的片段组装起来以生成缺失数据量减少的正射镶嵌图。作为概念验证,通过合并来自MODIS - TERRA、MODIS - AQUA、VIIRS - SNPP和VIIRS - JPSS - 1传感器的数据,实施了所提出的数据密集型方法来研究墨西哥海域的叶绿素浓度。结果表明,所提出的方法产生的结果与估计叶绿素浓度的现有方法相似,但避免了大图像导致的内存溢出。对所得图像的视觉和统计比较表明,与仅使用像素均值方法相比,所提出的方法能更准确地估计叶绿素浓度。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验