Borah Manashita, Gayan Antara, Sharma Jiv Siddhi, Chen YangQuan, Wei Zhouchao, Pham Viet-Thanh
Department of Electrical Engineering, Tezpur University, Tezpur, Assam 784028 India.
Mechatronics, Embedded Systems and Automation (MESA) Lab, University California Merced, Merced, USA.
Nonlinear Dyn. 2022;109(2):1187-1215. doi: 10.1007/s11071-021-07196-3. Epub 2022 May 23.
The deadly outbreak of the second wave of Covid-19, especially in worst hit lower-middle-income countries like India, and the drastic rise of another growing epidemic of , call for an efficient mathematical tool to model pandemics, analyse their course of outbreak and help in adopting quicker control strategies to converge to an infection-free equilibrium. This review paper on prominent pandemics reveals that their dispersion is chaotic in nature having long-range memory effects and features which the existing integer-order models fail to capture. This paper thus puts forward the use of fractional-order (FO) chaos theory that has memory capacity and hereditary properties, as a potential tool to model the pandemics with more accuracy and closeness to their real physical dynamics. We investigate eight FO models of Bombay plague, Cancer and Covid-19 pandemics through phase portraits, time series, Lyapunov exponents and bifurcation analysis. FO controllers (FOCs) on the concepts of fuzzy logic, adaptive sliding mode and active backstepping control are designed to stabilise chaos. Also, FOCs based on adaptive sliding mode and active backstepping synchronisation are designed to synchronise a chaotic epidemic with a non-chaotic one, to mitigate the unpredictability due to chaos during transmission. It is found that severity and complexity of the models increase as the memory fades, indicating that FO can be used as a crucial parameter to analyse the progression of a pandemic. To sum it up, this paper will help researchers to have an overview of using fractional calculus in modelling pandemics more precisely and also to approximate, choose, stabilise and synchronise the chaos control parameter that will eliminate the extreme sensitivity and irregularity of the models.
新冠疫情第二波致命爆发,尤其是在像印度这样受影响最严重的中低收入国家,以及另一种不断蔓延的流行病的急剧增加,都需要一种有效的数学工具来对大流行进行建模,分析其爆发过程,并有助于采取更快的控制策略,以实现无感染平衡。这篇关于重大流行病的综述论文表明,它们的传播本质上是混沌的,具有长程记忆效应和特征,而现有的整数阶模型无法捕捉到这些。因此,本文提出使用具有记忆能力和遗传特性的分数阶(FO)混沌理论,作为一种潜在工具,更准确、更贴近实际物理动态地对大流行进行建模。我们通过相图、时间序列、李雅普诺夫指数和分岔分析,研究了孟买鼠疫、癌症和新冠疫情的八个分数阶模型。基于模糊逻辑、自适应滑模和有源反步控制概念设计了分数阶控制器(FOC)来稳定混沌。此外,基于自适应滑模和有源反步同步设计了分数阶控制器,以使混沌流行病与非混沌流行病同步,以减轻传播过程中由于混沌导致的不可预测性。研究发现,随着记忆的消退,模型的严重性和复杂性增加,这表明分数阶可作为分析大流行进展的关键参数。总之,本文将帮助研究人员全面了解在更精确地对大流行进行建模时使用分数微积分的情况,还能对混沌控制参数进行近似、选择、稳定和同步,从而消除模型的极端敏感性和不规则性。