Razi Nausheen, Riaz Muhammad Bilal, Bano Ambreen, Kamran Tayyab, Ishtiaq Umar, Shafiq Anum
Department of Mathematics, Quaid-i-Azam University, Islamabad, Pakistan.
IT4Innovations, VSB - Technical University of Ostrava, Ostrava, Czech Republic.
PLoS One. 2025 Jan 8;20(1):e0313914. doi: 10.1371/journal.pone.0313914. eCollection 2025.
Malware is a common word in modern era. Everyone using computer is aware of it. Some users have to face the problem known as Cyber crimes. Nobody can survive without use of modern technologies based on computer networking. To avoid threat of malware, different companies provide antivirus strategies on a high cost. To prevent the data and keep privacy, companies using computers have to buy these antivirus programs (software). Software varies due to types of malware and is developed on structure of malware with a deep insight on behavior of nodes. We selected a mathematical malware propagation model having variable infection rate. We were interested in examining the impact of memory effects in this dynamical system in the sense of fractal fractional (FF) derivatives. In this paper, theoretical analysis is performed by concepts of fixed point theory. Existence, uniqueness and stability conditions are investigated for FF model. Numerical algorithm based on Lagrange two points interpolation polynomial is formed and simulation is done using Matlab R2016a on the deterministic model. We see the impact of different FF orders using power law kernel. Sensitivity analysis of different parameters such as initial infection rate, variable adjustment to sensitivity of infected nodes, immune rate of antivirus strategies and loss rate of immunity of removed nodes is investigated under FF model and is compared with classical. On investigation, we find that FF model describes the effects of memory on nodes in detail. Antivirus software can be developed considering the effect of FF orders and parameters to reduce persistence and eradication of infection. Small changes cause significant perturbation in infected nodes and malware can be driven into passive mode by understanding its propagation by FF derivatives and may take necessary actions to prevent the disaster caused by cyber crimes.
恶意软件是现代社会的一个常见词汇。每个使用计算机的人都知道它。一些用户不得不面对被称为网络犯罪的问题。在当今基于计算机网络的现代技术环境下,没有人能够脱离其使用而生存。为了避免恶意软件的威胁,不同的公司以高昂的成本提供防病毒策略。为了保护数据并维护隐私,使用计算机的公司不得不购买这些防病毒程序(软件)。软件因恶意软件的类型而异,并基于恶意软件的结构进行开发,同时深入洞察节点的行为。我们选择了一个具有可变感染率的数学恶意软件传播模型。我们感兴趣的是从分形分数(FF)导数的角度研究记忆效应在这个动态系统中的影响。在本文中,通过不动点理论的概念进行理论分析。研究了FF模型的存在性、唯一性和稳定性条件。基于拉格朗日两点插值多项式形成了数值算法,并使用Matlab R2016a对确定性模型进行了仿真。我们使用幂律核观察不同FF阶数的影响。在FF模型下研究了初始感染率、感染节点对敏感性的可变调整、防病毒策略的免疫率以及被清除节点的免疫损失率等不同参数的敏感性分析,并与经典模型进行了比较。通过研究,我们发现FF模型详细描述了记忆对节点的影响。可以考虑FF阶数和参数的影响来开发防病毒软件,以减少感染的持续性和根除感染。微小的变化会在感染节点中引起显著的扰动,通过理解其由FF导数的传播方式,可以将恶意软件驱动到被动模式,并可能采取必要措施防止网络犯罪造成的灾难。