Instituto de Ciencias Agropecuarias, Universidad Autónoma del Estado de Hidalgo, 43600, Tulancingo, Hidalgo, Mexico.
Instituto de Ciencias Básicas e Ingeniería, Universidad Autónoma del Estado de Hidalgo, 42184, Pachuca, Hidalgo, Mexico.
Sci Rep. 2022 May 30;12(1):9009. doi: 10.1038/s41598-022-12868-0.
Udder measures have been used to assess milk yield of sheep through classical methods of estimation. Artificial neural networks (ANN) can deal with complex non-linear relationships between input and output variables. In the current study, ANN were applied to udder measures from Pelibuey ewes to estimate their milk yield and this was compared with linear regression. A total of 357 milk yield records with its corresponding udder measures were used. A supervised learning was used to train and teach the network using a two-layer ANN with seven hidden structures. The globally convergent algorithm based on the resilient backpropagation was used to calculate ANN. Goodness of fit was evaluated using the mean square prediction error (MSPE), root MSPE (RMSPE), correlation coefficient (r), Bayesian's Information Criterion (BIC), Akaike's Information Criterion (AIC) and accuracy. The 15-15 ANN architecture showed that the best predictive milk yield performance achieved an accuracy of 97.9% and the highest values of r (0.93), and the lowest values of MSPE (0.0023), RMSPE (0.04), AIC (- 2088.81) and BIC (- 2069.56). The study revealed that ANN is a powerful tool to estimate milk yield when udder measures are used as input variables and showed better goodness of fit in comparison with classical regression methods.
已采用奶房产量的经典估测方法对绵羊的奶房产量进行估测。人工神经网络 (ANN) 可用于处理输入和输出变量之间复杂的非线性关系。本研究采用 ANN 对佩里比尤羊的奶房产量进行估测,并与线性回归进行了比较。共使用了 357 个奶房产量记录及其对应的奶房产量数据。采用监督式学习,通过具有 7 个隐藏结构的两层 ANN 对网络进行训练和教学。基于弹性反向传播的全局收敛算法用于计算 ANN。采用均方预测误差 (MSPE)、根均方预测误差 (RMSPE)、相关系数 (r)、贝叶斯信息准则 (BIC)、赤池信息准则 (AIC) 和准确率对拟合优度进行评估。15-15 ANN 架构显示,最佳预测奶产量表现的准确率为 97.9%,r 值最高(0.93),MSPE(0.0023)、RMSPE(0.04)、AIC(-2088.81)和 BIC(-2069.56)最低。研究表明,当将奶房产量用作输入变量时,ANN 是一种强大的奶产量估测工具,与经典回归方法相比,它具有更好的拟合优度。