Suppr超能文献

利用人工神经网络和贝叶斯回归模型预测安格斯牛大理石花纹评分的预期后代差异。

Predicting expected progeny difference for marbling score in Angus cattle using artificial neural networks and Bayesian regression models.

机构信息

Department of Animal Sciences, University of Wisconsin, Madison, WI 53706, USA.

出版信息

Genet Sel Evol. 2013 Sep 11;45(1):34. doi: 10.1186/1297-9686-45-34.

Abstract

BACKGROUND

Artificial neural networks (ANN) mimic the function of the human brain and are capable of performing massively parallel computations for data processing and knowledge representation. ANN can capture nonlinear relationships between predictors and responses and can adaptively learn complex functional forms, in particular, for situations where conventional regression models are ineffective. In a previous study, ANN with Bayesian regularization outperformed a benchmark linear model when predicting milk yield in dairy cattle or grain yield of wheat. Although breeding values rely on the assumption of additive inheritance, the predictive capabilities of ANN are of interest from the perspective of their potential to increase the accuracy of prediction of molecular breeding values used for genomic selection. This motivated the present study, in which the aim was to investigate the accuracy of ANN when predicting the expected progeny difference (EPD) of marbling score in Angus cattle. Various ANN architectures were explored, which involved two training algorithms, two types of activation functions, and from 1 to 4 neurons in hidden layers. For comparison, BayesCπ models were used to select a subset of optimal markers (referred to as feature selection), under the assumption of additive inheritance, and then the marker effects were estimated using BayesCπ with π set equal to zero. This procedure is referred to as BayesCpC and was implemented on a high-throughput computing cluster.

RESULTS

The ANN with Bayesian regularization method performed equally well for prediction of EPD as BayesCpC, based on prediction accuracy and sum of squared errors. With the 3K-SNP panel, for example, prediction accuracy was 0.776 using BayesCpC, and ranged from 0.776 to 0.807 using BRANN. With the selected 700-SNP panel, prediction accuracy was 0.863 for BayesCpC and ranged from 0.842 to 0.858 for BRANN. However, prediction accuracy for the ANN with scaled conjugate gradient back-propagation was lower, ranging from 0.653 to 0.689 with the 3K-SNP panel, and from 0.743 to 0.793 with the selected 700-SNP panel.

CONCLUSIONS

ANN with Bayesian regularization performed as well as linear Bayesian regression models in predicting additive genetic values, supporting the idea that ANN are useful as universal approximators of functions of interest in breeding contexts.

摘要

背景

人工神经网络(ANN)模仿人脑的功能,能够进行大规模并行计算,用于数据处理和知识表示。ANN 可以捕捉预测因子和响应之间的非线性关系,并能够自适应地学习复杂的函数形式,特别是在传统回归模型无效的情况下。在之前的一项研究中,当预测奶牛的产奶量或小麦的谷物产量时,具有贝叶斯正则化的 ANN 优于基准线性模型。虽然育种值依赖于加性遗传的假设,但从提高用于基因组选择的分子育种值预测准确性的角度来看,ANN 的预测能力引起了人们的兴趣。这促使本研究调查了 ANN 在预测安格斯牛大理石评分的预期后代差异(EPD)时的准确性。探索了各种 ANN 架构,其中包括两种训练算法、两种激活函数类型以及 1 到 4 个隐藏层神经元。为了进行比较,在加性遗传的假设下,使用 BayesCπ 模型选择了最佳标记的子集(称为特征选择),然后使用π设置为零的 BayesCπ 估计标记效应。此过程称为 BayesCpC,并在高性能计算集群上实现。

结果

基于预测准确性和均方误差,具有贝叶斯正则化的 ANN 方法的预测 EPD 性能与 BayesCpC 相当。例如,使用 BayesCpC 的预测准确性为 0.776,而使用 BRANN 的预测准确性范围为 0.776 至 0.807。使用选定的 700-SNP 面板,BayesCpC 的预测准确性为 0.863,而 BRANN 的预测准确性范围为 0.842 至 0.858。然而,使用缩放共轭梯度反向传播的 ANN 的预测准确性较低,使用 3K-SNP 面板的预测准确性范围为 0.653 至 0.689,使用选定的 700-SNP 面板的预测准确性范围为 0.743 至 0.793。

结论

在预测加性遗传值方面,具有贝叶斯正则化的 ANN 与线性贝叶斯回归模型表现一样好,这支持了 ANN 作为育种背景下感兴趣的函数的通用逼近的想法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/09db/3851253/21d2a281c4b6/1297-9686-45-34-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验