Department of Nephrology and Hypertension, University Medical Center Utrecht, Utrecht University, Room F03.225, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
Department of Radiology, University Medical Center Utrecht, Utrecht University, Heidelberglaan 100, 3584 CX, Utrecht, The Netherlands.
Sci Rep. 2022 May 30;12(1):9013. doi: 10.1038/s41598-022-13145-w.
Assessment of daily creatinine production and excretion plays a crucial role in the estimation of renal function. Creatinine excretion is estimated by creatinine excretion equations and implicitly in eGFR equations like MDRD and CKD-EPI. These equations are however unreliable in patients with aberrant body composition. In this study we developed and validated equations estimating creatinine production using deep learning body-composition analysis of clinically acquired CT-scans. We retrospectively included patients in our center that received any CT-scan including the abdomen and had a 24-h urine collection within 2 weeks of the scan (n = 636). To validate the equations in healthy individuals, we included a kidney donor dataset (n = 287). We used a deep learning algorithm to segment muscle and fat at the 3rd lumbar vertebra, calculate surface areas and extract radiomics parameters. Two equations for CT-based estimate of RenAl FuncTion (CRAFT 1 including CT parameters, age, weight, and stature and CRAFT 2 excluding weight and stature) were developed and compared to the Cockcroft-Gault and the Ix equations. CRAFT1 and CRAFT 2 were both unbiased (MPE = 0.18 and 0.16 mmol/day, respectively) and accurate (RMSE = 2.68 and 2.78 mmol/day, respectively) in the patient dataset and were more accurate than the Ix (RMSE = 3.46 mmol/day) and Cockcroft-Gault equation (RMSE = 3.52 mmol/day). In healthy kidney donors, CRAFT 1 and CRAFT 2 remained unbiased (MPE = - 0.71 and - 0.73 mmol/day respectively) and accurate (RMSE = 1.86 and 1.97 mmol/day, respectively). Deep learning-based extraction of body-composition parameters from abdominal CT-scans can be used to reliably estimate creatinine production in both patients as well as healthy individuals. The presented algorithm can improve the estimation of renal function in patients who have recently had a CT scan. The proposed methods provide an improved estimation of renal function that is fully automatic and can be readily implemented in routine clinical practice.
评估每日肌酐生成和排泄在估计肾功能方面起着至关重要的作用。肌酐排泄通过肌酐排泄方程进行估计,并且隐含在 MDRD 和 CKD-EPI 等 eGFR 方程中。然而,这些方程在身体成分异常的患者中不可靠。在这项研究中,我们开发并验证了使用深度学习对临床获得的 CT 扫描进行身体成分分析来估计肌酐生成的方程。我们回顾性地纳入了本中心在扫描后 2 周内接受任何包括腹部 CT 扫描且同时进行 24 小时尿液收集的患者(n=636)。为了在健康个体中验证方程,我们纳入了一个肾脏供者数据集(n=287)。我们使用深度学习算法对第 3 腰椎的肌肉和脂肪进行分割,计算表面积并提取放射组学参数。我们开发了两个基于 CT 的 RenAl FuncTion 估计方程(CRAFT 1 包含 CT 参数、年龄、体重和身高,CRAFT 2 不包含体重和身高),并与 Cockcroft-Gault 和 Ix 方程进行了比较。在患者数据集中,CRAFT1 和 CRAFT 2 均无偏(MPE 分别为 0.18 和 0.16 mmol/天)且准确(RMSE 分别为 2.68 和 2.78 mmol/天),且比 Ix(RMSE 为 3.46 mmol/天)和 Cockcroft-Gault 方程(RMSE 为 3.52 mmol/天)更准确。在健康的肾脏供者中,CRAFT 1 和 CRAFT 2 仍然无偏(MPE 分别为-0.71 和-0.73 mmol/天)且准确(RMSE 分别为 1.86 和 1.97 mmol/天)。从腹部 CT 扫描中提取身体成分参数的深度学习方法可用于可靠地估计患者和健康个体的肌酐生成。所提出的算法可以改善最近接受 CT 扫描的患者的肾功能估计。所提出的方法提供了一种改进的肾功能估计,完全自动,并且可以很容易地在常规临床实践中实施。