Suppr超能文献

化学反应网络知识图谱:OntoRXN本体论

Chemical reaction network knowledge graphs: the OntoRXN ontology.

作者信息

Garay-Ruiz Diego, Bo Carles

机构信息

Institute of Chemical Research of Catalonia (ICIQ), The Barcelona Institute of Science and Technology, Av. Països Catalans 16, 43007, Tarragona, Spain.

Departament de Química Física i Inorgànica, Universitat Rovira i Virgili, Marcel . lí Domingo s/n, 43007, Tarragona, Spain.

出版信息

J Cheminform. 2022 May 30;14(1):29. doi: 10.1186/s13321-022-00610-x.

Abstract

The organization and management of large amounts of data has become a major point in almost all areas of human knowledge. In this context, semantic approaches propose a structure for the target data, defining ontologies that state the types of entities on a certain field and how these entities are interrelated. In this work, we introduce OntoRXN, a novel ontology describing the reaction networks constructed from computational chemistry calculations. Under our paradigm, these networks are handled as undirected graphs, without assuming any traversal direction. From there, we propose a core class structure including reaction steps, network stages, chemical species, and the lower-level entities for the individual computational calculations. These individual calculations are founded on the OntoCompChem ontology and on the ioChem-BD database, where information is parsed and stored in CML format. OntoRXN is introduced through several examples in which knowledge graphs based on the ontology are generated for different chemical systems available on ioChem-BD. Finally, the resulting knowledge graphs are explored through SPARQL queries, illustrating the power of the semantic approach to standardize the analysis of intricate datasets and to simplify the development of complex workflows.

摘要

大量数据的组织和管理已成为几乎所有人类知识领域的一个要点。在此背景下,语义方法为目标数据提出一种结构,定义本体来阐述特定领域中实体的类型以及这些实体如何相互关联。在这项工作中,我们引入了OntoRXN,这是一种描述由计算化学计算构建的反应网络的新型本体。在我们的范式中,这些网络被当作无向图来处理,不假设任何遍历方向。由此,我们提出了一个核心类结构,包括反应步骤、网络阶段、化学物种以及用于各个计算的较低层级实体。这些个体计算基于OntoCompChem本体和ioChem - BD数据库,在该数据库中信息以CML格式进行解析和存储。通过几个示例介绍OntoRXN,其中针对ioChem - BD上可用的不同化学系统生成基于该本体的知识图谱。最后,通过SPARQL查询探索生成的知识图谱,展示了语义方法在标准化复杂数据集分析以及简化复杂工作流程开发方面的强大功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/9c20/9153116/8bed77fc9c3c/13321_2022_610_Fig9_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验