Suppr超能文献

结核分枝杆菌中的 tRNA-乙酰转移酶毒素和解毒酶。

A tRNA-Acetylating Toxin and Detoxifying Enzyme in Mycobacterium tuberculosis.

机构信息

Department of Immunology and Infectious Diseases, Harvard T. H. Chan School of Public Health, Boston, Massachusetts, USA.

Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.

出版信息

Microbiol Spectr. 2022 Jun 29;10(3):e0058022. doi: 10.1128/spectrum.00580-22. Epub 2022 May 31.

Abstract

Toxin-antitoxin (TA) systems allow bacteria to adapt to changing environments without altering gene expression. Despite being overrepresented in Mycobacterium tuberculosis, their physiological roles remain elusive. We describe a TA system in M. tuberculosis which we named TacAT due to its homology to previously discovered systems in Salmonella. The toxin, TacT, blocks growth by acetylating glycyl-tRNAs and inhibiting translation. Its effects are reversed by the enzyme peptidyl tRNA hydrolase (Pth), which also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. Pth is essential in most bacteria and thereby has been proposed as a promising drug target for complex pathogens like M. tuberculosis. Transposon sequencing data suggest that the operon is nonessential for M. tuberculosis growth , and premature stop mutations in this TA system present in some clinical isolates suggest that it is also dispensable . We assessed whether TacT modulates essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacAT is disrupted. We show that essentiality is unaffected by the absence of . These results highlight a fundamental aspect of mycobacterial biology and indicate that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics. The global rise in antibiotic-resistant tuberculosis has prompted an urgent search for new drugs. Toxin-antitoxin (TA) systems allow bacteria to adapt rapidly to environmental changes, and Mycobacterium tuberculosis encodes more TA systems than any known pathogen. We have characterized a new TA system in M. tuberculosis: the toxin, TacT, acetylates charged tRNA to block protein synthesis. TacT's effects are reversed by the essential bacterial enzyme peptidyl tRNA hydrolase (Pth), which is currently being explored as an antibiotic target. Pth also cleaves peptidyl tRNAs that are prematurely released from stalled ribosomes. We assessed whether TacT modulates essentiality in M. tuberculosis because drugs targeting Pth might prompt resistance if TacT is disrupted. We show that essentiality is unaffected by the absence of this TA system, indicating that Pth's essential role hinges on its peptidyl-tRNA hydrolase activity. Our work underscores Pth's potential as a viable target for new antibiotics.

摘要

毒素-抗毒素 (TA) 系统允许细菌在不改变基因表达的情况下适应不断变化的环境。尽管在结核分枝杆菌中过度表达,但它们的生理作用仍然难以捉摸。我们描述了结核分枝杆菌中的一个 TA 系统,由于其与先前在沙门氏菌中发现的系统具有同源性,我们将其命名为 TacAT。毒素 TacT 通过乙酰化甘氨酰-tRNA 并抑制翻译来阻止生长。其作用可被酶肽基 tRNA 水解酶 (Pth) 逆转,该酶还可切割从停滞核糖体过早释放的肽基 tRNA。Pth 在大多数细菌中是必不可少的,因此被提议作为结核分枝杆菌等复杂病原体的有希望的药物靶点。转座子测序数据表明, operon 对于结核分枝杆菌的生长不是必需的,并且在一些临床分离株中存在的该 TA 系统的过早终止突变表明它也是可有可无的。我们评估了 TacT 是否调节结核分枝杆菌中的必需性,因为如果 TacAT 被破坏,靶向 Pth 的药物可能会引发耐药性。我们表明,缺失 不会影响 的必需性。这些结果突出了分枝杆菌生物学的一个基本方面,并表明 Pth 的必需作用取决于其肽基-tRNA 水解酶活性。我们的工作强调了 Pth 作为新抗生素的潜在可行靶点。全球抗生素耐药性结核病的增加促使人们迫切寻找新的药物。毒素-抗毒素 (TA) 系统允许细菌快速适应环境变化,而结核分枝杆菌编码的 TA 系统比任何已知病原体都多。我们已经在结核分枝杆菌中鉴定了一个新的 TA 系统:毒素 TacT 通过乙酰化带电荷的 tRNA 来阻断蛋白质合成。毒素 TacT 的作用可被必需的细菌酶肽基 tRNA 水解酶 (Pth) 逆转,目前正在作为抗生素靶点进行探索。Pth 还可切割从停滞核糖体过早释放的肽基 tRNA。我们评估了 TacT 是否调节结核分枝杆菌中的必需性,因为如果 TacT 被破坏,靶向 Pth 的药物可能会引发耐药性。我们表明,缺失这个 TA 系统不会影响 的必需性,这表明 Pth 的必需作用取决于其肽基-tRNA 水解酶活性。我们的工作强调了 Pth 作为新抗生素的潜在可行靶点。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6c10/9241777/721d1d13eab8/spectrum.00580-22-f001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验