University of Bucharest, Faculty of Physics, Str. Atomiştilor 405, 077125 Bucharest-Măgurele, Romania.
Institute for Neuroscience and Medicine and Institute for Advanced Simulations (IAS-5/INM-9), Computational Biomedicine, Forschungszentrum Jülich, 52425 Jülich, Germany.
J Phys Chem B. 2022 Jun 9;126(22):3973-3984. doi: 10.1021/acs.jpcb.2c00200. Epub 2022 May 31.
Dynamic hydrogen bonds and hydrogen-bond networks are ubiquitous in proteins and protein complexes. Functional roles that have been assigned to hydrogen-bond networks include structural plasticity for protein function, allosteric conformational coupling, long-distance proton transfers, and transient storage of protons. Advances in structural biology provide invaluable insights into architectures of large proteins and protein complexes of direct interest to human physiology and disease, including G Protein Coupled Receptors (GPCRs) and the SARS-Covid-19 spike protein S, and give rise to the challenge of how to identify those interactions that are more likely to govern protein dynamics. This Perspective discusses applications of graph-based algorithms to dissect dynamical hydrogen-bond networks of protein complexes, with illustrations for GPCRs and spike protein S. H-bond graphs provide an overview of sites in GPCR structures where hydrogen-bond dynamics would be required to assemble longer-distance networks between functionally important motifs. In the case of spike protein S, graphs identify regions of the protein where hydrogen bonds rearrange during the reaction cycle and where local hydrogen-bond networks likely change in a virus variant of concern.
动态氢键和氢键网络在蛋白质和蛋白质复合物中普遍存在。氢键网络被赋予的功能作用包括蛋白质功能的结构可塑性、变构构象偶联、长程质子转移和质子的瞬时储存。结构生物学的进步为人类生理学和疾病直接相关的大型蛋白质和蛋白质复合物的结构提供了宝贵的见解,包括 G 蛋白偶联受体(GPCR)和 SARS-CoV-2 的刺突蛋白 S,并提出了如何识别那些更有可能控制蛋白质动力学的相互作用的挑战。本观点讨论了基于图的算法在剖析蛋白质复合物动态氢键网络中的应用,并用 GPCR 和刺突蛋白 S 进行了说明。氢键图提供了 GPCR 结构中需要氢键动力学才能在功能重要模体之间组装更长距离网络的位点的概述。在刺突蛋白 S 的情况下,图确定了在反应循环中氢键重新排列的蛋白质区域,以及在关注的病毒变体中局部氢键网络可能发生变化的区域。