Drewniak Philip, Xiao Peng, Ladizhansky Vladimir, Bondar Ana-Nicoleta, Brown Leonid S
Department of Physics and Biophysics Interdepartmental Group, University of Guelph, Guelph, ON, Canada.
University of Bucharest, Faculty of Physics, Atomiștilor 405, Măgurele 077125, Romania; Forschungszentrum Jülich, Institute for Neuroscience and Medicine (INM), Computational Biomedicine (INM-9), Wilhelm-Johnen Straße, 5428 Jülich, Germany.
Biophys J. 2024 Dec 17;123(24):4285-4303. doi: 10.1016/j.bpj.2024.10.011. Epub 2024 Oct 18.
Aquaporins (AQPs) are α-helical transmembrane proteins that conduct water through membranes with high selectivity and permeability. For human AQP1, in addition to the functional Asn-Pro-Ala motifs and the aromatic/Arg selectivity filter within the pore, there are several highly conserved residues that form an expansive hydrogen-bonding network. Previous solid-state nuclear magnetic resonance studies and structural conservation analysis have detailed which residues may be involved in this network. We explored this network by mutating the side chains or backbones involved in hydrogen-bonding, generating the following mutants: N127A, V133P, E142A, T187A, R195A, and S196A. The fold and stability of these mutants were assessed with attenuated total reflection Fourier transform infrared spectroscopy coupled with hydrogen/deuterium exchange upon increasing temperature. We found that replacement of any of the chosen residues to alanine leads to either partial instability or outright misfolding at room temperature, with the latter being most pronounced for the N127A, V133P, T187A, and R195A mutants. Deconvolution analysis of the amide I band revealed considerable secondary structure deviations, with some mutants exhibiting new random coil and β sheet structures. We also found that some of these mutations potentially disrupt the oligomerization of human AQP1. BN-PAGE and DLS data provide evidence toward the loss of tetramers within most of the mutants, meanwhile only the S196A mutant retains tetrameric organization. The molecular dynamics simulation of the wild-type, and the N127A, E142A, and T187A mutants show that these mutations result in major rearrangements of intra- and intermonomer hydrogen-bond networks. Overall, we show that specific point mutations that perturb hydrogen-bonding clusters result in severe misfolding in hAQP1 and disruption of its oligomerization. These data provide valuable insight into the structural stability of human aquaporin-1 and have implications toward other members of the AQP family, as these networks are largely conserved among a variety of human and nonmammalian AQP homologs.
水通道蛋白(AQPs)是α-螺旋跨膜蛋白,能以高选择性和通透性引导水通过细胞膜。对于人类AQP1,除了孔内起作用的天冬酰胺-脯氨酸-丙氨酸基序和芳香族/精氨酸选择性过滤器外,还有几个高度保守的残基形成了一个广泛的氢键网络。先前的固态核磁共振研究和结构保守性分析已经详细说明了哪些残基可能参与这个网络。我们通过突变参与氢键形成的侧链或主链来探索这个网络,产生了以下突变体:N127A、V133P、E142A、T187A、R195A和S196A。通过衰减全反射傅里叶变换红外光谱结合升温时的氢/氘交换来评估这些突变体的折叠和稳定性。我们发现,将任何一个选定的残基替换为丙氨酸都会导致在室温下部分不稳定或完全错误折叠,对于N127A、V133P、T187A和R195A突变体,后者最为明显。酰胺I带的去卷积分析揭示了相当大的二级结构偏差,一些突变体表现出新的无规卷曲和β折叠结构。我们还发现,其中一些突变可能会破坏人类AQP1的寡聚化。蓝色非变性聚丙烯酰胺凝胶电泳(BN-PAGE)和动态光散射(DLS)数据提供了证据,表明大多数突变体中四聚体的丧失,同时只有S196A突变体保留了四聚体结构。野生型以及N127A、E142A和T187A突变体的分子动力学模拟表明,这些突变导致单体内部和单体间氢键网络的重大重排。总体而言,我们表明,扰乱氢键簇的特定点突变会导致hAQP1严重错误折叠并破坏其寡聚化。这些数据为人类水通道蛋白-1的结构稳定性提供了有价值的见解,并对AQP家族的其他成员有影响,因为这些网络在多种人类和非哺乳动物AQP同源物中在很大程度上是保守的。