Department of Chemical & Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States.
ACS Nano. 2022 Jun 28;16(6):9546-9558. doi: 10.1021/acsnano.2c02804. Epub 2022 May 31.
Peptide-drug conjugates that self-assemble into supramolecular nanomaterials have promise for uses in drug delivery. These discrete molecular species offer high and precise drug loading, affording efficient carriers for various therapeutic agents. Their peptide modules, meanwhile, enable biological targeting and stimuli-responsive function while also ordering the assembled nanostructure. The often hydrophobic drug payload likewise acts as a directive for self-assembly in aqueous media. Though accessible synthetic methods have allowed for extensive exploration of the peptide design space, the specific contributions of the drug molecule and its linker to the resulting assembly have been less explored. Hydrophobic drugs frequently have planar domains, conjugated π-systems, and isolated polar groups, which in turn can lead to specific and directional self-interactions. These energies of interaction affect the free energy landscape of self-assembly and may impact the form and assembly process of the desired nanomaterial. Here, two model supramolecular peptide-drug conjugates (sPDCs) are explored, composed of the corticosteroid dexamethasone conjugated to a conserved peptide sequence via two different linker chemistries. The choice of linker, which alters the orientation, rotational freedom, and number of stereoisomers of the prodrug in the final sPDC, impacts the mechanism and energetic barrier of assembly as well as the nano/macroscale properties of the resultant supramolecular materials. Accordingly, this work demonstrates the nonzero energetic contributions of the drug and its linker to sPDC self-assembly, provides a quantitative exploration of the sPDC free energy landscape, and suggests design principles for the enhanced control of sPDC nanomaterials to inform future applications as therapeutic drug carriers.
自组装成超分子纳米材料的肽 - 药物偶联物在药物传递中有很大的应用潜力。这些离散的分子物种提供了高且精确的药物负载,为各种治疗剂提供了高效的载体。同时,它们的肽模块能够进行生物靶向和刺激响应功能,同时也能对组装的纳米结构进行排序。通常疏水的药物有效负载也可以作为在水介质中自组装的指导。尽管可访问的合成方法允许对肽设计空间进行广泛探索,但药物分子及其连接子对所得组装体的具体贡献研究较少。疏水性药物通常具有平面结构域、共轭 π 体系和孤立的极性基团,这反过来又可以导致特定的和定向的自相互作用。这些相互作用能影响自组装的自由能景观,并可能影响所需纳米材料的形式和组装过程。在这里,研究了两种模型超分子肽 - 药物偶联物(sPDC),它们由皮质类固醇地塞米松通过两种不同的连接化学连接到保守的肽序列组成。连接子的选择会改变前药在最终 sPDC 中的取向、旋转自由度和立体异构体的数量,从而影响组装的机制和能量障碍以及所得超分子材料的纳米/宏观性质。因此,这项工作证明了药物及其连接子对 sPDC 自组装的非零能量贡献,对 sPDC 自由能景观进行了定量探索,并为增强对 sPDC 纳米材料的控制提供了设计原则,以告知作为治疗药物载体的未来应用。