Medical Experiment Center, Guangdong Second Provincial General Hospital, Guangdong, PR China.
Center for Reproductive Medicine, Guangdong Second Provincial General Hospital, Guangdong, PR China.
Biol Reprod. 2022 Sep 12;107(3):765-778. doi: 10.1093/biolre/ioac112.
In oocytes, mRNA decay is essential for maturation and subsequent events, such as maternal-zygotic transition, zygotic genomic activation, and embryo development. Reversible N6-methyladenosine RNA methylation directly regulates transcription, pre-mRNA splicing, mRNA export, mRNA stability, and translation. Here, we identified that downregulation of N6-methyladenosine modification by microinjecting a methyltransferase-like 3 (Mettl3)-specific small interfering RNA into mouse germinal vesicle oocytes led to defects in meiotic spindles and the first polar body extrusion during maturation in vitro. By further quantitative real-time polymerase chain reaction and Poly(A)-tail assay analysis, we found that N6-methyladenosine methylation mainly acts by reducing deadenylation of mRNAs mediated by the carbon catabolite repression 4-negative on TATA less system, thereby causing mRNA accumulation in oocytes. Meanwhile, transcriptome analysis of germinal vesicle oocytes revealed the downregulation of transcripts of several genes encoding ribosomal subunits proteins in the Mettl3 small interfering RNA-treated group, suggesting that N6-methyladenosine modification might affect translation. Together, our results indicate that RNA methylation accelerates mRNA decay, confirming the critical role of RNA clearance in oocyte maturation.
在卵母细胞中,mRNA 衰变对于成熟和随后的事件(如母-合子过渡、合子基因组激活和胚胎发育)至关重要。可逆的 N6-甲基腺苷 RNA 甲基化直接调节转录、前体 mRNA 剪接、mRNA 输出、mRNA 稳定性和翻译。在这里,我们发现通过将甲基转移酶样 3(Mettl3)特异性小干扰 RNA 显微注射到小鼠生发泡卵母细胞中,下调 N6-甲基腺苷修饰导致体外成熟过程中减数分裂纺锤体和第一极体挤出缺陷。通过进一步的定量实时聚合酶链反应和 Poly(A)-尾分析,我们发现 N6-甲基腺苷修饰主要通过减少 TATA -less 系统中碳分解产物抑制 4 阴性介导的 mRNA 脱腺苷酸化来发挥作用,从而导致卵母细胞中 mRNA 的积累。同时,生发泡卵母细胞的转录组分析显示,在 Mettl3 小干扰 RNA 处理组中,几个编码核糖体亚基蛋白的基因的转录本下调,表明 N6-甲基腺苷修饰可能影响翻译。总之,我们的结果表明 RNA 甲基化加速了 mRNA 的衰变,证实了 RNA 清除在卵母细胞成熟中的关键作用。