Suppr超能文献

BOSO:一种用于高维数据线性回归的新型特征选择算法。

BOSO: A novel feature selection algorithm for linear regression with high-dimensional data.

机构信息

Universidad de Navarra, Tecnun Escuela de Ingeniería, San Sebastián, Spain.

Universidad de Navarra, CIMA Centro de Investigación de Medicina Aplicada, Pamplona, Spain.

出版信息

PLoS Comput Biol. 2022 May 31;18(5):e1010180. doi: 10.1371/journal.pcbi.1010180. eCollection 2022 May.

Abstract

With the frenetic growth of high-dimensional datasets in different biomedical domains, there is an urgent need to develop predictive methods able to deal with this complexity. Feature selection is a relevant strategy in machine learning to address this challenge. We introduce a novel feature selection algorithm for linear regression called BOSO (Bilevel Optimization Selector Operator). We conducted a benchmark of BOSO with key algorithms in the literature, finding a superior accuracy for feature selection in high-dimensional datasets. Proof-of-concept of BOSO for predicting drug sensitivity in cancer is presented. A detailed analysis is carried out for methotrexate, a well-studied drug targeting cancer metabolism.

摘要

随着不同生物医学领域高维数据集的飞速增长,我们迫切需要开发能够应对这种复杂性的预测方法。特征选择是机器学习中应对这一挑战的一种相关策略。我们引入了一种新的线性回归特征选择算法,称为 BOSO(双层优化选择算子)。我们对 BOSO 与文献中的关键算法进行了基准测试,发现其在高维数据集中进行特征选择的准确性更高。我们还展示了 BOSO 用于预测癌症药物敏感性的概念验证。我们对甲氨蝶呤(一种针对癌症代谢的研究充分的药物)进行了详细分析。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/13a2/9187084/5264cb27557c/pcbi.1010180.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验