文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

新型混沌反对派果蝇优化算法在 COVID-19 患者健康预测中的特征选择应用。

Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction.

机构信息

Faculty of Informatics and Computing, Singidunum University, Belgrade, Serbia.

Department of Applied Cybernetics,Faculty of Science, University of Hradec Kràlové, Hradec Kràalové, Czech Republic.

出版信息

PLoS One. 2022 Oct 10;17(10):e0275727. doi: 10.1371/journal.pone.0275727. eCollection 2022.


DOI:10.1371/journal.pone.0275727
PMID:36215218
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC9550095/
Abstract

The fast-growing quantity of information hinders the process of machine learning, making it computationally costly and with substandard results. Feature selection is a pre-processing method for obtaining the optimal subset of features in a data set. Optimization algorithms struggle to decrease the dimensionality while retaining accuracy in high-dimensional data set. This article proposes a novel chaotic opposition fruit fly optimization algorithm, an improved variation of the original fruit fly algorithm, advanced and adapted for binary optimization problems. The proposed algorithm is tested on ten unconstrained benchmark functions and evaluated on twenty-one standard datasets taken from the Univesity of California, Irvine repository and Arizona State University. Further, the presented algorithm is assessed on a coronavirus disease dataset, as well. The proposed method is then compared with several well-known feature selection algorithms on the same datasets. The results prove that the presented algorithm predominantly outperform other algorithms in selecting the most relevant features by decreasing the number of utilized features and improving classification accuracy.

摘要

快速增长的信息量阻碍了机器学习的进程,使其计算成本高,结果不达标。特征选择是一种预处理方法,用于从数据集中获取最优的特征子集。优化算法在降低高维数据集的维度的同时,难以保持准确性。本文提出了一种新颖的混沌反对果蝇优化算法,这是对原始果蝇算法的改进,适用于二进制优化问题。所提出的算法在十个无约束基准函数上进行了测试,并在加利福尼亚大学欧文分校和亚利桑那州立大学存储库中选取的二十一个标准数据集上进行了评估。此外,还对冠状病毒疾病数据集进行了评估。然后,该方法与同一数据集上的几种著名的特征选择算法进行了比较。结果证明,所提出的算法通过减少使用的特征数量和提高分类准确性,在选择最相关的特征方面优于其他算法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/62c677daba85/pone.0275727.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/87747723d9aa/pone.0275727.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/4c4e56361de9/pone.0275727.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/bc9274af08f7/pone.0275727.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/89ab437a9e5a/pone.0275727.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/62c677daba85/pone.0275727.g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/87747723d9aa/pone.0275727.g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/4c4e56361de9/pone.0275727.g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/bc9274af08f7/pone.0275727.g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/89ab437a9e5a/pone.0275727.g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c3e1/9550095/62c677daba85/pone.0275727.g005.jpg

相似文献

[1]
Novel chaotic oppositional fruit fly optimization algorithm for feature selection applied on COVID 19 patients' health prediction.

PLoS One. 2022

[2]
Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection.

Heliyon. 2023-4-6

[3]
Feature Selection by Hybrid Brain Storm Optimization Algorithm for COVID-19 Classification.

J Comput Biol. 2022-6

[4]
An improved chaotic fruit fly optimization based on a mutation strategy for simultaneous feature selection and parameter optimization for SVM and its applications.

PLoS One. 2017-4-3

[5]
A novel firefly algorithm approach for efficient feature selection with COVID-19 dataset.

Microprocess Microsyst. 2023-4

[6]
Binary dwarf mongoose optimizer for solving high-dimensional feature selection problems.

PLoS One. 2022

[7]
An Innovative Excited-ACS-IDGWO Algorithm for Optimal Biomedical Data Feature Selection.

Biomed Res Int. 2020

[8]
Social coevolution and Sine chaotic opposition learning Chimp Optimization Algorithm for feature selection.

Sci Rep. 2024-7-4

[9]
A novel chaotic transient search optimization algorithm for global optimization, real-world engineering problems and feature selection.

PeerJ Comput Sci. 2023-8-22

[10]
IBGJO: Improved Binary Golden Jackal Optimization with Chaotic Tent Map and Cosine Similarity for Feature Selection.

Entropy (Basel). 2023-7-27

引用本文的文献

[1]
Quasi-reflection learning arithmetic optimization algorithm firefly search for feature selection.

Heliyon. 2023-4-6

本文引用的文献

[1]
COVID-19 cases prediction by using hybrid machine learning and beetle antennae search approach.

Sustain Cities Soc. 2021-3

[2]
COVID-19 image classification using deep features and fractional-order marine predators algorithm.

Sci Rep. 2020-9-21

[3]
A deep learning approach to detect Covid-19 coronavirus with X-Ray images.

Biocybern Biomed Eng. 2020

[4]
A new COVID-19 Patients Detection Strategy (CPDS) based on hybrid feature selection and enhanced KNN classifier.

Knowl Based Syst. 2020-10-12

[5]
COVID-19 Patient Health Prediction Using Boosted Random Forest Algorithm.

Front Public Health. 2020

[6]
An automated Residual Exemplar Local Binary Pattern and iterative ReliefF based COVID-19 detection method using chest X-ray image.

Chemometr Intell Lab Syst. 2020-8-15

[7]
A diagnostic model for coronavirus disease 2019 (COVID-19) based on radiological semantic and clinical features: a multi-center study.

Eur Radiol. 2020-4-16

[8]
A problem of dimensionality: a simple example.

IEEE Trans Pattern Anal Mach Intell. 1979-3

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索