IUF - Leibniz Research Institute for Environmental Medicine, Duesseldorf, Germany.
Nucleic Acids Res. 2022 Jul 5;50(W1):W199-W203. doi: 10.1093/nar/gkac440.
Genome engineering-induced cleavage sites can be resolved by non-homologous end joining (NHEJ) or homology-directed repair (HDR). Identifying genetically modified clones at the target locus remains an intensive and laborious task. Different workflows and software that rely on deep sequencing data have been developed to detect and quantify targeted mutagenesis. Nevertheless, these pipelines require high-quality reads generated by Next Generation Sequencing (NGS) platforms. Here, we have developed a robust, versatile, and easy-to-use computational webserver named CRISPRnano (www.CRISPRnano.de) that enables the analysis of low-quality reads generated by affordable and portable sequencers including Oxford Nanopore Technologies (ONT) devices. CRISPRnano allows fast and accurate identification, quantification, and visualization of genetically modified cell lines, it is compatible with NGS and ONT sequencing reads, and it can be used without an internet connection.
基因编辑诱导的切割位点可以通过非同源末端连接(NHEJ)或同源定向修复(HDR)来解决。在靶基因座鉴定遗传修饰的克隆仍然是一项艰巨而费力的任务。已经开发了不同的依赖于深度测序数据的工作流程和软件来检测和定量靶向诱变。然而,这些流水线需要由下一代测序(NGS)平台生成的高质量读取。在这里,我们开发了一种强大、通用且易于使用的计算网络服务器,名为 CRISPRnano(www.CRISPRnano.de),它能够分析由经济实惠且便携的测序仪(包括牛津纳米孔技术(ONT)设备)生成的低质量读取。CRISPRnano 允许快速、准确地识别、定量和可视化遗传修饰的细胞系,它与 NGS 和 ONT 测序读取兼容,并且可以在没有互联网连接的情况下使用。