School of Biochemistry, University of Bristol; University Walk, Bristol BS8 1TD, UK.
Max Planck Bristol Centre for Minimal Biology, Cantock's Close, Bristol BS8 1TS, UK.
Nucleic Acids Res. 2022 Jun 10;50(10):5934-5947. doi: 10.1093/nar/gkac421.
UPF3 is a key nonsense-mediated mRNA decay (NMD) factor required for mRNA surveillance and eukaryotic gene expression regulation. UPF3 exists as two paralogs (A and B) which are differentially expressed depending on cell type and developmental stage and believed to regulate NMD activity based on cellular requirements. UPF3B mutations cause intellectual disability. The underlying molecular mechanisms remain elusive, as many of the mutations lie in the poorly characterized middle-domain of UPF3B. Here, we show that UPF3A and UPF3B share structural and functional homology to paraspeckle proteins comprising an RNA-recognition motif-like domain (RRM-L), a NONA/paraspeckle-like domain (NOPS-L), and extended α-helical domain. These domains are essential for RNA/ribosome-binding, RNA-induced oligomerization and UPF2 interaction. Structures of UPF2's third middle-domain of eukaryotic initiation factor 4G (MIF4GIII) in complex with either UPF3B or UPF3A reveal unexpectedly intimate binding interfaces. UPF3B's disease-causing mutation Y160D in the NOPS-L domain displaces Y160 from a hydrophobic cleft in UPF2 reducing the binding affinity ∼40-fold compared to wildtype. UPF3A, which is upregulated in patients with the UPF3B-Y160D mutation, binds UPF2 with ∼10-fold higher affinity than UPF3B reliant mainly on NOPS-L residues. Our characterization of RNA- and UPF2-binding by UPF3's middle-domain elucidates its essential role in NMD.
UPF3 是一种关键的无义介导的 mRNA 降解 (NMD) 因子,对于 mRNA 监测和真核基因表达调控至关重要。UPF3 存在两种同源物(A 和 B),它们根据细胞类型和发育阶段的不同而表达,并被认为根据细胞需求调节 NMD 活性。UPF3B 突变导致智力障碍。潜在的分子机制仍不清楚,因为许多突变位于 UPF3B 中特征较差的中间结构域。在这里,我们表明 UPF3A 和 UPF3B 与包含 RNA 识别基序样结构域(RRM-L)、NONA/paraspeckle 样结构域(NOPS-L)和扩展α-螺旋结构域的 paraspeckle 蛋白具有结构和功能同源性。这些结构域对于 RNA/核糖体结合、RNA 诱导寡聚化和 UPF2 相互作用至关重要。真核起始因子 4G(MIF4GIII)的第三个中间结构域的 UPF2 结构与 UPF3B 或 UPF3A 的复合物揭示了出人意料的紧密结合界面。NOPS-L 结构域中的 UPF3B 致病突变 Y160D 将 Y160 从 UPF2 的疏水性裂缝中置换出来,与野生型相比,结合亲和力降低了约 40 倍。UPF3A 在携带 UPF3B-Y160D 突变的患者中上调,与 UPF2 的结合亲和力比 UPF3B 高约 10 倍,主要依赖于 NOPS-L 残基。我们对 UPF3 中间结构域的 RNA 和 UPF2 结合进行了表征,阐明了它在 NMD 中的重要作用。