Suppr超能文献

DeepLUCIA:使用基于深度学习的通用染色质相互作用注释器预测组织特异性染色质环

DeepLUCIA: predicting tissue-specific chromatin loops using Deep Learning-based Universal Chromatin Interaction Annotator.

作者信息

Yang Dongchan, Chung Taesu, Kim Dongsup

机构信息

Department of Bio and Brain Engineering, KAIST, Daejeon 34141, Republic of Korea.

Biotechnology & Healthcare Examination Division, Convergence Technology Examination Bureau, KIPO, Daejeon 35208, Republic of Korea.

出版信息

Bioinformatics. 2022 Jul 11;38(14):3501-3512. doi: 10.1093/bioinformatics/btac373.

Abstract

MOTIVATION

The importance of chromatin loops in gene regulation is broadly accepted. There are mainly two approaches to predict chromatin loops: transcription factor (TF) binding-dependent approach and genomic variation-based approach. However, neither of these approaches provides an adequate understanding of gene regulation in human tissues. To address this issue, we developed a deep learning-based chromatin loop prediction model called Deep Learning-based Universal Chromatin Interaction Annotator (DeepLUCIA).

RESULTS

Although DeepLUCIA does not use TF binding profile data which previous TF binding-dependent methods critically rely on, its prediction accuracies are comparable to those of the previous TF binding-dependent methods. More importantly, DeepLUCIA enables the tissue-specific chromatin loop predictions from tissue-specific epigenomes that cannot be handled by genomic variation-based approach. We demonstrated the utility of the DeepLUCIA by predicting several novel target genes of SNPs identified in genome-wide association studies targeting Brugada syndrome, COVID-19 severity and age-related macular degeneration. Availability and implementation DeepLUCIA is freely available at https://github.com/bcbl-kaist/DeepLUCIA.

SUPPLEMENTARY INFORMATION

Supplementary data are available at Bioinformatics online.

摘要

动机

染色质环在基因调控中的重要性已被广泛认可。预测染色质环主要有两种方法:依赖转录因子(TF)结合的方法和基于基因组变异的方法。然而,这些方法都无法充分理解人类组织中的基因调控。为了解决这个问题,我们开发了一种基于深度学习的染色质环预测模型,称为基于深度学习的通用染色质相互作用注释器(DeepLUCIA)。

结果

尽管DeepLUCIA不使用先前依赖TF结合的方法所严重依赖的TF结合谱数据,但其预测准确性与先前依赖TF结合的方法相当。更重要的是,DeepLUCIA能够从基于基因组变异的方法无法处理的组织特异性表观基因组中进行组织特异性染色质环预测。我们通过预测在针对 Brugada 综合征、COVID-19 严重程度和年龄相关性黄斑变性的全基因组关联研究中鉴定的几个单核苷酸多态性(SNP)的新靶基因,证明了 DeepLUCIA 的实用性。可用性和实现方式 DeepLUCIA 可在 https://github.com/bcbl-kaist/DeepLUCIA 上免费获取。

补充信息

补充数据可在《生物信息学》在线获取。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验