Department of Psychology, University of Nevada, Reno, 1664 N. Virginia St, Reno, NV, 89557, USA.
Department of Psychology, Iowa State University, Ames, IA, USA.
Behav Res Methods. 2023 Apr;55(3):1259-1274. doi: 10.3758/s13428-022-01807-6. Epub 2022 May 31.
A police lineup is a procedure in which a suspect is surrounded by known-innocent persons (fillers) and presented to the witness for an identification attempt. The purpose of a lineup is to test the investigator's hypothesis that the suspect is the culprit, and the investigator uses the witness' identification decision and the associated confidence level to inform this hypothesis. Whereas suspect identifications provide evidence of guilt, filler identifications and rejections provide evidence of innocence. Despite the capacity of lineups to provide exculpatory information, past research has focused, almost exclusively, on inculpatory behaviors. We recently developed a method for incorporating all lineup outcomes in a single receiver operator characteristic (ROC) curve. The area under the full lineup ROC curve reflects the total capacity of a lineup procedure to discriminate guilty suspects from innocent suspects. Here, we introduce a Comprehensive R Archive Network (CRAN) package, fullROC, to support eyewitness researchers in using the full ROC approach to analyze lineup data. The fullROC package provides functions for adjusting identification rates, generating full ROC curves for lineup data, computing the area under the ROC curves (AUC), and statistically comparing the AUCs of different lineups. Using both simulated and empirical data, we illustrate the functionality of the fullROC CRAN package. In brief, the fullROC package provides a useful tool for eyewitness researchers to analyze lineup data using the full ROC method, which incorporates both the inculpatory and exculpatory information of eyewitness behaviors.
证人辨认列队是一种程序,其中嫌疑犯被一群已知的无罪者(填充物)包围,并被呈现给证人进行身份尝试。列队的目的是测试调查员的假设,即嫌疑犯是罪犯,调查员使用证人的身份识别决定和相关的置信水平来证实这一假设。虽然嫌疑犯的身份识别提供了有罪的证据,但填充物的身份识别和拒绝提供了无罪的证据。尽管证人辨认列队有能力提供无罪证据,但过去的研究几乎完全集中在有罪行为上。我们最近开发了一种方法,可以将所有证人辨认列队的结果纳入单个接收者操作特征(ROC)曲线中。完整证人辨认列队 ROC 曲线下的面积反映了证人辨认列队程序区分有罪嫌疑犯和无罪嫌疑犯的总能力。在这里,我们引入了一个全面的 R 档案网络(CRAN)包,fullROC,以支持目击者研究人员使用完整的 ROC 方法分析证人辨认列队数据。fullROC 包提供了用于调整身份识别率、为证人辨认列队数据生成完整 ROC 曲线、计算 ROC 曲线下面积(AUC)以及统计比较不同证人辨认列队 AUC 的功能。使用模拟和经验数据,我们说明了 fullROC CRAN 包的功能。简而言之,fullROC 包为目击者研究人员提供了一个有用的工具,用于使用完整的 ROC 方法分析证人辨认列队数据,该方法结合了目击者行为的有罪和无罪信息。