Sutter Health Center for Health Systems Research, Walnut Creek, CA, USA.
Kaiser Permanente Division of Research, Oakland, CA, USA.
Cephalalgia. 2022 Oct;42(11-12):1255-1264. doi: 10.1177/03331024221104180. Epub 2022 May 31.
The heterogeneity of migraine has been reported extensively, with identified subgroups usually based on symptoms. Grouping individuals with migraine and similar comorbidity profiles has been suggested, however such segmentation methods have not been tested using real-world clinical data.
To gain insights into natural groupings of patients with migraine using latent class analysis based on electronic health record-determined comorbidities.
Retrospective electronic health record data analysis of primary-care patients at Sutter Health, a large open healthcare system in Northern California, USA. We identified migraine patients over a five-year time period (2015-2019) and extracted 29 comorbidities. We then applied latent class analysis to identify comorbidity-based natural subgroups.
We identified 95,563 patients with migraine and found seven latent classes, summarized by their predominant comorbidities and population share: fewest comorbidities (61.8%), psychiatric (18.3%), some comorbidities (10.0%), most comorbidities - no cardiovascular (3.6%), vascular (3.1%), autoimmune/joint/pain (2.2%), and most comorbidities (1.0%). We found minimal demographic differences across classes.
Our study found groupings of migraine patients based on comorbidity that have the potential to be used to guide targeted treatment strategies and the development of new therapies.
偏头痛的异质性已被广泛报道,已确定的亚组通常基于症状。有人提出将偏头痛和具有相似合并症特征的个体进行分组,但这种分组方法尚未使用真实临床数据进行测试。
利用基于电子健康记录确定的合并症的潜在类别分析,深入了解偏头痛患者的自然分组。
对美国北加州大型开放医疗保健系统 Sutter Health 的初级保健患者的回顾性电子健康记录数据进行分析。我们在五年时间(2015-2019 年)内确定了偏头痛患者,并提取了 29 种合并症。然后,我们应用潜在类别分析来识别基于合并症的自然亚组。
我们确定了 95563 名偏头痛患者,发现了七个潜在类别,由其主要合并症和人群份额总结:合并症最少(61.8%)、精神科(18.3%)、有些合并症(10.0%)、合并症最多-无心血管(3.6%)、血管(3.1%)、自身免疫/关节/疼痛(2.2%)和合并症最多(1.0%)。我们发现各类别之间的人口统计学差异很小。
我们的研究发现了基于合并症的偏头痛患者分组,这些分组有可能用于指导靶向治疗策略和新疗法的开发。