Institute of Physical Biology, Heinrich Heine University Düsseldorf, Universitätsstrasse 1, 40225, Düsseldorf, Germany.
Institute of Biological Information Processing, IBI-7: Structural Biochemistry, Forschungszentrum Jülich, 52428, Jülich, Germany.
ChemistryOpen. 2022 Jun;11(6):e202200080. doi: 10.1002/open.202200080.
Living cells often contain compartments with high concentration of charged biomolecules. A key question pertinent to the function of biomolecules is how water dynamics are affected by interaction with charged molecules. Here, we study the dynamical behavior of water in an extreme condition, that is, in saturated salt solutions, where nearly all water molecules are located within the first hydration layer of ions. To facilitate disentangling the effects of cations and anions, our study is focused on alkali chloride solutions. Following a multi-nuclear NMR approach enabling direct monitoring of protons and the quadrupolar nuclei Li, O, Na, Cl, Rb and Cs, we investigate how the translational and rotational mobility of water molecules, chloride anion and corresponding cations are affected within the constrained environment of saturated solutions. Our results indicate that water molecules preserve a large level of mobility within saturated alkali chloride solutions that is significantly independent of adjacent ions.
活细胞通常包含带有高浓度带电生物分子的隔室。与生物分子功能相关的一个关键问题是,与带电分子相互作用如何影响水动力学。在这里,我们研究了水在极端条件下的动力学行为,即在饱和盐溶液中,几乎所有的水分子都位于离子的第一层水合层内。为了便于分离阳离子和阴离子的影响,我们的研究集中在碱金属氯化物溶液上。通过一种多核 NMR 方法,可以直接监测质子和四极核 Li、O、Na、Cl、Rb 和 Cs,我们研究了在饱和溶液的约束环境中,水分子、氯离子和相应阳离子的分子的平移和旋转流动性如何受到影响。我们的结果表明,水分子在饱和的碱金属氯化物溶液中保持着较高的流动性水平,这与相邻离子显著无关。