Suppr超能文献

口腔鳞状细胞癌中的B7家族分子:系统评价。第一部分:B7-H1(PD-L1)和B7-DC(PD-L2)。

The B7 family molecules in oral squamous cell carcinoma: a systematic review. Part I: B7-H1 (PD-L1) and B7-DC (PD-L2).

作者信息

Starzyńska Anna, Sejda Aleksandra, Adamski Łukasz, Adamska Paulina, Pęksa Rafał, Sakowicz-Burkiewicz Monika, Wychowański Piotr, Jereczek-Fossa Barbara A

机构信息

Department of Oral Surgery, Medical University of Gdansk, Gdansk, Poland.

Department of Pathomorphology, University of Warmia and Mazury, Olsztyn, Poland.

出版信息

Postepy Dermatol Alergol. 2022 Apr;39(2):265-274. doi: 10.5114/ada.2020.98522. Epub 2020 Oct 13.

Abstract

INTRODUCTION

Oral squamous cell carcinoma (OSCC) is the most common cancerous lesion in the oral cavity. During recent years, no significant reduction in the survival rate has been observed.

AIM

To systematically review the literature and to summarise correlations between B7 family proteins and prognosis in OSCC.

MATERIAL AND METHODS

A systematic review of the literature about B7-H1 (PD-L1) and B7-DC (PD-L2) was carried out, following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Thirty-six articles published before 22 May 2020 were included in the systematic review.

RESULTS

The biggest study group consisted of 305 patients and the smallest - 10 patients. PD-L1 proved to be a prognostic factor in patients with OSCC. Immunohistochemistry was the most commonly used diagnostic method.

CONCLUSIONS

Any mutations in the gene encoding PD-L1 and quantitative or functional changes in the status of PD-L1 may be important in the prognosis of OSCC.

摘要

引言

口腔鳞状细胞癌(OSCC)是口腔中最常见的癌性病变。近年来,其生存率未见显著下降。

目的

系统回顾文献并总结B7家族蛋白与OSCC预后之间的相关性。

材料与方法

按照系统评价和Meta分析的首选报告项目(PRISMA)指南,对有关B7-H1(PD-L1)和B7-DC(PD-L2)的文献进行系统回顾。2020年5月22日前发表的36篇文章被纳入该系统评价。

结果

最大的研究组有305例患者,最小的有10例患者。PD-L1被证明是OSCC患者的一个预后因素。免疫组织化学是最常用的诊断方法。

结论

编码PD-L1的基因中的任何突变以及PD-L1状态的定量或功能变化可能对OSCC的预后很重要。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/b65d/9131943/8e0162ba4276/PDIA-39-41686-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验