Suppr超能文献

量化溪流中硅藻与养分之间的时空关系,能增强监测数据中养分效应的证据。

Quantifying spatial and temporal relationships between diatoms and nutrients in streams strengthens evidence of nutrient effects from monitoring data.

作者信息

Yuan Lester L, Smucker Nathan J, Nietch Christopher T, Pilgrim Erik M

机构信息

United States Environmental Protection Agency, Office of Water 4304T, 1200 Pennsylvania Avenue NW, Washington, DC 20460 USA.

United States Environmental Protection Agency, Office of Research and Development, Mail Stop 587, 26 West Martin Luther King Drive, Cincinnati, Ohio 45268 USA.

出版信息

Freshw Sci. 2022 Mar;41(1):100-112. doi: 10.1086/718631.

Abstract

Observational data are frequently used to better understand the effects of changes in P and N on stream biota, but nutrient gradients in streams are usually associated with gradients in other environmental factors, a phenomenon that complicates efforts to accurately estimate the effects of nutrients. Here, we propose a new approach for analyzing observational data in which we compare the effects of changes in nutrient concentrations in time within individual sites and in space among many sites. Covarying relationships between other, potentially confounding environmental factors and nutrient concentrations are unlikely to be the same in both time and space, and, therefore, estimated effects of nutrients that are similar in time and space are more likely to be accurate. We applied this approach to diatom metabarcoding data collected from streams in the East Fork of the Little Miami River watershed, Ohio, USA. Changes in diatom assemblage composition were consistently associated with changes in the concentration of total reactive P in both time and space. In contrast, despite being associated with spatial differences in ammonia and urea concentrations, diatom assemblage composition was not associated with temporal changes in these nitrogen species. We suggest that the results of this analysis provide evidence of a causal effect of increased P on diatom assemblage composition. We further analyzed the effects of temporal variability in measurements of total reactive P and found that averaging periods greater than ~1 wk prior to sampling best represented the effects of P on the diatom assemblage. Comparisons of biological responses in space and time can sharpen insights beyond those that are based on analyses conducted on only 1 of the 2 dimensions.

摘要

观测数据经常被用于更好地理解磷(P)和氮(N)的变化对河流生物群的影响,但是河流中的养分梯度通常与其他环境因素的梯度相关,这一现象使得准确估计养分的影响变得复杂。在这里,我们提出一种分析观测数据的新方法,即比较单个站点内养分浓度随时间的变化以及多个站点间养分浓度在空间上的变化所产生的影响。其他潜在的混杂环境因素与养分浓度之间的协变关系在时间和空间上不太可能相同,因此,在时间和空间上相似的养分估计影响更可能是准确的。我们将这种方法应用于从美国俄亥俄州小迈阿密河流域东叉的溪流中收集的硅藻代谢条形码数据。硅藻组合组成的变化在时间和空间上都与总活性磷浓度的变化一致相关。相比之下,尽管硅藻组合组成与氨和尿素浓度的空间差异有关,但与这些氮形态的时间变化无关。我们认为该分析结果提供了磷增加对硅藻组合组成有因果效应的证据。我们进一步分析了总活性磷测量中时间变异性的影响,发现采样前大于约1周的平均周期最能代表磷对硅藻组合的影响。在空间和时间上对生物响应进行比较,可以深化基于仅在二维中的一个维度上进行的分析所获得的见解。

相似文献

4
Excess of nitrogen reduces temporal variability of stream diatom assemblages.氮过量会降低溪流硅藻组合的时间变异性。
Sci Total Environ. 2020 Apr 15;713:136630. doi: 10.1016/j.scitotenv.2020.136630. Epub 2020 Jan 10.

引用本文的文献

本文引用的文献

4
Excess of nitrogen reduces temporal variability of stream diatom assemblages.氮过量会降低溪流硅藻组合的时间变异性。
Sci Total Environ. 2020 Apr 15;713:136630. doi: 10.1016/j.scitotenv.2020.136630. Epub 2020 Jan 10.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验