Suppr超能文献

钯锌-石墨相氮化碳纳米复合材料作为选择性CO至CO₂转化电催化剂的电子结构优化

Electronic Structure Optimization of PdZn-Graphitic Carbon Nitride Nanocomposites as Electrocatalysts for Selective CO to CO Conversion.

作者信息

Woyessa Girma W, Chuang Chuan-Hung, Rameez Mohammad, Hung Chen-Hsiung

机构信息

Sustainable Chemical Science and Technology, Taiwan International Graduate Program, 128 Academia Road, Section 2, Nankang, Taipei 115201, Taiwan.

Department of Applied Chemistry, National Yang Ming Chiao Tung University, No. 1001, Daxue Rd. East Dist., Hsinchu 300093, Taiwan.

出版信息

ACS Omega. 2022 May 9;7(20):17295-17304. doi: 10.1021/acsomega.2c01216. eCollection 2022 May 24.

Abstract

Herein, a novel PdZn/g-CN nanocomposite electrocatalyst, PdZnGCN, prepared from a facile hydrothermal reduction procedure for an efficient CO to CO conversion has been examined. This composite catalyst reduces CO at a thermodynamic overpotential of 0.79 V versus RHE with a 93.6% CO Faradaic efficiency and a CO partial current density of 4.4 mA cm. Moreover, the turnover frequency for PdZnGCN reaches 20 974 h with an average selectivity of 95.4% for CO after 1 h and an energy efficiency approaching 59%, which is superior to most reported noble metals and metal alloys as electrocatalysts. The enhanced catalytic activity of this nanocomposite is due to synergistic interactions between PdZn and g-CN as evidenced by optimum work function, zeta potential, CO desorption rate, and downshifted d-band center. Furthermore, suppressed grain growth during the formation of nanocomposites also results in faster reaction kinetics, as demonstrated by a lower Tafel slope (93.6 mV/dec) and a larger electrochemically active surface, consequently enhancing the overall performance.

摘要

在此,研究了一种通过简便的水热还原法制备的新型PdZn/g-CN纳米复合电催化剂PdZnGCN,用于高效的CO到CO₂的转化。该复合催化剂在相对于可逆氢电极(RHE)为0.79 V的热力学过电位下还原CO,CO法拉第效率为93.6%,CO₂分电流密度为4.4 mA cm⁻²。此外,PdZnGCN的周转频率达到20974 h⁻¹,1 h后对CO₂的平均选择性为95.4%,能量效率接近59%,优于大多数已报道的作为电催化剂的贵金属和金属合金。这种纳米复合材料催化活性的增强归因于PdZn和g-CN之间的协同相互作用,这通过最佳功函数、zeta电位、CO₂解吸速率和下移的d带中心得到证明。此外,纳米复合材料形成过程中抑制的晶粒生长也导致更快的反应动力学,这通过较低的塔菲尔斜率(93.6 mV/dec)和更大的电化学活性表面得到证明,从而提高了整体性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4395/9134383/688e166cbac2/ao2c01216_0002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验