Wang Min, Chen Lingjing, Lau Tai-Chu, Robert Marc
Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'Electrochimie Moléculaire, Unité Mixte de Recherche Université-CNRS no. 7591, Bâtiment Lavoisier, 15 rue Jean de Baïf, 75025, Paris Cedex 13, France.
School of Environment and Civil Engineering, Dongguan University of Technology, Guangdong, 523808, P. R. China.
Angew Chem Int Ed Engl. 2018 Jun 25;57(26):7769-7773. doi: 10.1002/anie.201802792. Epub 2018 May 22.
Associating a metal-based catalyst to a carbon-based nanomaterial is a promising approach for the production of solar fuels from CO . Upon appending a Co quaterpyridine complex [Co(qpy)] at the surface of multi-walled carbon nanotubes, CO conversion into CO was realized in water at pH 7.3 with 100 % catalytic selectivity and 100 % Faradaic efficiency, at low catalyst loading and reduced overpotential. A current density of 0.94 mA cm was reached at -0.35 V vs. RHE (240 mV overpotential), and 9.3 mA cm could be sustained for hours at only 340 mV overpotential with excellent catalyst stability (89 095 catalytic cycles in 4.5 h), while 19.9 mA cm was met at 440 mV overpotential. Such a hybrid material combines the high selectivity of a homogeneous molecular catalyst to the robustness of a heterogeneous material. Catalytic performances compare well with those of noble-metal-based nano-electrocatalysts and atomically dispersed metal atoms in carbon matrices.
将金属基催化剂与碳基纳米材料相结合是一种利用一氧化碳生产太阳能燃料的很有前景的方法。在多壁碳纳米管表面附着钴四吡啶配合物[Co(qpy)]后,在pH值为7.3的水中实现了一氧化碳向二氧化碳的转化,催化选择性为100%,法拉第效率为100%,催化剂负载量低且过电位降低。相对于可逆氢电极(RHE),在-0.35 V时电流密度达到0.94 mA cm²(过电位为240 mV),在仅340 mV过电位下,9.3 mA cm²的电流密度可持续数小时,且催化剂稳定性极佳(4.5小时内有89095次催化循环),而在440 mV过电位下电流密度达到19.9 mA cm²。这种混合材料将均相分子催化剂的高选择性与非均相材料的稳健性结合在一起。其催化性能与基于贵金属的纳米电催化剂以及碳基质中原子分散的金属原子的催化性能相当。