Turhan Berk, Gümüş Zeynep H
Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
Faculty of Natural Sciences and Engineering, Sabanci University, Istanbul, Turkey.
Front Bioinform. 2022 Apr;2. doi: 10.3389/fbinf.2022.873478. Epub 2022 Apr 6.
How we interact with computer graphics has not changed significantly from viewing 2D text and images on a flatscreen since their invention. Yet, recent advances in computing technology, internetworked devices and gaming are driving the design and development of new ideas in other modes of human-computer interfaces (HCIs). Virtual Reality (VR) technology uses computers and HCIs to create the feeling of immersion in a three-dimensional (3D) environment that contains interactive objects with a sense of , where objects have a spatial location relative to, and independent of the users. While this environment does not necessarily match the world, by creating the illusion of reality, it helps users leverage the full range of human sensory capabilities. Similarly, Augmented Reality (AR), superimposes virtual images to the real world. Because humans learn the physical world through a gradual sensory familiarization, these immersive visualizations enable gaining familiarity with biological systems not realizable in the physical world (e.g., allosteric regulatory networks within a protein or biomolecular pathways inside a cell). As VR/AR interfaces are anticipated to be explosive in consumer markets, systems biologists will be more immersed into their world. Here we introduce a brief history of VR/AR, their current roles in systems biology, and advantages and disadvantages in augmenting user abilities. We next argue that in systems biology, VR/AR technologies will be most useful in visually exploring and communicating data; performing virtual experiments; and education/teaching. Finally, we discuss our perspective on future directions for VR/AR in systems biology.
自从发明平板屏幕以来,我们与计算机图形的交互方式与在其上查看二维文本和图像相比,并没有显著变化。然而,计算技术、网络互联设备和游戏领域的最新进展正在推动人机界面(HCI)其他模式下新想法的设计与开发。虚拟现实(VR)技术利用计算机和人机界面,营造出沉浸在三维(3D)环境中的感觉,该环境包含具有真实感的交互式对象,其中对象相对于用户具有空间位置且独立于用户。虽然这个环境不一定与现实世界相符,但通过营造现实的错觉,它能帮助用户充分利用人类的各种感官能力。同样,增强现实(AR)将虚拟图像叠加到现实世界中。由于人类通过逐步的感官熟悉来了解物理世界,这些沉浸式可视化能够让人熟悉在物理世界中无法实现的生物系统(例如,蛋白质内的变构调节网络或细胞内的生物分子途径)。随着VR/AR界面预计在消费市场呈爆发式增长,系统生物学家将更深入地融入他们的世界。在这里,我们介绍VR/AR的简史、它们目前在系统生物学中的作用以及增强用户能力方面的优缺点。接下来,我们认为在系统生物学中,VR/AR技术在视觉探索和数据交流、进行虚拟实验以及教育/教学方面将最为有用。最后,我们讨论我们对系统生物学中VR/AR未来发展方向的看法。
Front Bioinform. 2022-4
Int J Comput Assist Radiol Surg. 2018-7-24
J Digit Imaging. 2019-2
Nihon Geka Gakkai Zasshi. 2016-9
Nat Rev Methods Primers. 2023
J Cosmet Dermatol. 2025-2
Bioengineering (Basel). 2024-4-19
J Integr Bioinform. 2022-12-1
Front Genet. 2021-10-28
Front Psychol. 2021-8-23
Annu Rev Biomed Data Sci. 2019-7
Front Bioeng Biotechnol. 2021-5-14
Nat Methods. 2021-1
Acta Crystallogr D Struct Biol. 2021-1-1