Suppr超能文献

SLS 3D 打印的异烟肼速溶打印片:体外和体内特性研究。

Very-Rapidly Dissolving Printlets of Isoniazid Manufactured by SLS 3D Printing: In Vitro and In Vivo Characterization.

机构信息

Irma Lerma Rangel College of Pharmacy, Texas A&M Health Science Center, Texas A&M University, Reynolds Medical Sciences Building, Suite 159, College Station, Texas 77843-1114, United States.

Department of Pharmaceutics, Faculty of Pharmacy, Beni-Suef University, Beni-Suef 62514, Egypt.

出版信息

Mol Pharm. 2022 Aug 1;19(8):2937-2949. doi: 10.1021/acs.molpharmaceut.2c00306. Epub 2022 Jun 1.

Abstract

The focus of this research was to understand the effects of formulation and processing variables on the very-rapidly dissolving printlets of isoniazid (INH) manufactured by the selective laser sintering (SLS) three-dimensional (3D) printing method, and to characterize their physicochemical properties, stability, and pharmacokinetics. Fifteen printlet formulations were manufactured by varying the laser scanning speed (400-500 mm/s, ), surface temperature (100-110 °C, ), and croscarmellose sodium (CCS, %, ), and the responses measured were weight (), hardness (), disintegration time (DT, ), and dissolution (). Laser scanning was the most important processing factor affecting the responses. DT was very rapid (≥3 s), and dissolution (>99%) was completed within 3 min. The root-mean-square error in the studied responses was low and analysis of variance (ANOVA) was statistically significant ( < 0.05). X-ray micro-computed tomography (micro-CT) images showed very porous structures with 24.6-34.4% porosity. X-ray powder diffraction and differential scanning calorimetry data indicated partial conversion of the crystalline drug into an amorphous form. The printlets were stable at 40 °C/75% RH with no significant changes in assay and dissolution. Pharmacokinetic profiles of the printlets and compressed tablets were superimposable. In conclusion, the rapidly dissolving printlets of the INH were stable, and oral bioavailability was similar to that of compositionally identical compressed tablets.

摘要

本研究的重点是了解制剂和加工变量对通过选择性激光烧结(SLS)三维(3D)打印方法制造的异烟肼(INH)速溶打印片的影响,并对其理化性质、稳定性和药代动力学进行表征。通过改变激光扫描速度(400-500mm/s)、表面温度(100-110°C)和交联羧甲纤维素钠(CCS,%),制备了 15 种打印片制剂,测量的响应为重量()、硬度()、崩解时间(DT,)和溶解()。激光扫描是影响响应的最重要的加工因素。DT 非常快(≥3s),溶解(>99%)在 3 分钟内完成。研究响应的均方根误差较低,方差分析(ANOVA)具有统计学意义(<0.05)。X 射线微计算机断层扫描(micro-CT)图像显示具有 24.6-34.4%孔隙率的非常多孔结构。X 射线粉末衍射和差示扫描量热法数据表明,部分晶型药物转化为无定形形式。在 40°C/75%RH 下,打印片稳定,含量和溶解度无明显变化。打印片和压缩片剂的药代动力学曲线相似。总之,INH 的速溶打印片稳定,口服生物利用度与成分相同的压缩片剂相似。

相似文献

1
Very-Rapidly Dissolving Printlets of Isoniazid Manufactured by SLS 3D Printing: In Vitro and In Vivo Characterization.
Mol Pharm. 2022 Aug 1;19(8):2937-2949. doi: 10.1021/acs.molpharmaceut.2c00306. Epub 2022 Jun 1.
5
Preparation and Characterization of 3D-Printed Dose-Flexible Printlets of Tenofovir Disoproxil Fumarate.
AAPS PharmSciTech. 2023 Aug 11;24(6):171. doi: 10.1208/s12249-023-02623-7.
6
Pyrimethamine 3D printlets for pediatric toxoplasmosis: design, pharmacokinetics, and anti-toxoplasma activity.
Expert Opin Drug Deliv. 2023 Feb;20(2):301-311. doi: 10.1080/17425247.2023.2169272. Epub 2023 Jan 29.
10
Fabricating 3D printed orally disintegrating printlets using selective laser sintering.
Int J Pharm. 2018 Apr 25;541(1-2):101-107. doi: 10.1016/j.ijpharm.2018.02.015. Epub 2018 Feb 14.

引用本文的文献

1
Fabrication and optimization of freeze-dried isoniazid-loaded poly--caprolactone nanoparticles.
ADMET DMPK. 2025 Jul 8;13(4):2774. doi: 10.5599/admet.2774. eCollection 2025.
2
Spiked Systems for Colonic Drug Delivery: Architectural Opportunities and Quality Assurance of Selective Laser Sintering.
ACS Biomater Sci Eng. 2025 Mar 10;11(3):1818-1833. doi: 10.1021/acsbiomaterials.4c02038. Epub 2025 Feb 6.
3
Rising role of 3D-printing in delivery of therapeutics for infectious disease.
J Control Release. 2024 Feb;366:349-365. doi: 10.1016/j.jconrel.2023.12.051. Epub 2024 Jan 8.
6
Pyrimethamine 3D printlets for pediatric toxoplasmosis: design, pharmacokinetics, and anti-toxoplasma activity.
Expert Opin Drug Deliv. 2023 Feb;20(2):301-311. doi: 10.1080/17425247.2023.2169272. Epub 2023 Jan 29.
7
Releasing fast and slow: Non-destructive prediction of density and drug release from SLS 3D printed tablets using NIR spectroscopy.
Int J Pharm X. 2022 Dec 17;5:100148. doi: 10.1016/j.ijpx.2022.100148. eCollection 2023 Dec.

本文引用的文献

2
Vat photopolymerization 3D printing for advanced drug delivery and medical device applications.
J Control Release. 2021 Jan 10;329:743-757. doi: 10.1016/j.jconrel.2020.10.008. Epub 2020 Oct 5.
4
Stereolithography (SLA) 3D printing of ascorbic acid loaded hydrogels: A controlled release study.
Int J Pharm. 2020 Jun 30;584:119428. doi: 10.1016/j.ijpharm.2020.119428. Epub 2020 May 20.
5
Selective laser sintering 3D printing - an overview of the technology and pharmaceutical applications.
Drug Dev Ind Pharm. 2020 Jun;46(6):869-877. doi: 10.1080/03639045.2020.1764027. Epub 2020 May 13.
7
3D Printed Tablets (Printlets) with Braille and Moon Patterns for Visually Impaired Patients.
Pharmaceutics. 2020 Feb 19;12(2):172. doi: 10.3390/pharmaceutics12020172.
8
3D printing by fused deposition modeling of single- and multi-compartment hollow systems for oral delivery - A review.
Int J Pharm. 2020 Apr 15;579:119155. doi: 10.1016/j.ijpharm.2020.119155. Epub 2020 Feb 17.
9
Treatment of Isoniazid-Resistant Pulmonary Tuberculosis.
Tuberc Respir Dis (Seoul). 2020 Jan;83(1):20-30. doi: 10.4046/trd.2019.0065.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验