Saed Mohand O, Terentjev Eugene M
Cavendish Laboratory, University of Cambridge, Cambridge CB3 0HE, United Kingdom.
ACS Macro Lett. 2020 May 19;9(5):749-755. doi: 10.1021/acsmacrolett.0c00265. Epub 2020 May 6.
Liquid crystalline elastomer networks cross-linked by dynamic covalent bonds (xLCE) have the ability to be (re)processed during the plastic flow. However, the current bond-exchange strategies that are used to induce plastic flow in xLCE lack the efficient method to control the elastic-plastic transition. Here we describe a straightforward method to manipulate the transition to plastic flow via the choice of catalyst in xLCE cross-linked by siloxane. The nature and the amount of catalyst have a profound effect on the elastic-plastic transition temperature, and the stress relaxation behavior of the network. The temperature of fast plastic flow and the associated bond-exchange activation energy varied from 120 °C and 83 kJ/mol in the "fastest" exchange promoted by triazobicyclodecene (TBD) to 240 °C and 164 kJ/mol in the "slowest" exchange with triphenylphosphine (PPH), with a range of catalysts in between. We have identified the optimum conditions for programming an aligned monodomain xLCE, high programming temperature (230 °C) and low nematic to isotropic transition (60 °C), to achieve thermally and mechanically stable actuators.
通过动态共价键交联的液晶弹性体网络(xLCE)在塑性流动过程中具有(再)加工的能力。然而,目前用于在xLCE中诱导塑性流动的键交换策略缺乏控制弹塑性转变的有效方法。在此,我们描述了一种直接的方法,通过在硅氧烷交联的xLCE中选择催化剂来操纵向塑性流动的转变。催化剂的性质和用量对弹塑性转变温度以及网络的应力松弛行为有深远影响。快速塑性流动的温度和相关的键交换活化能在由三环己基膦(TBD)促进的“最快”交换中为120°C和83 kJ/mol,在与三苯基膦(PPH)的“最慢”交换中为240°C和164 kJ/mol,中间有一系列催化剂。我们已经确定了对取向单畴xLCE进行编程的最佳条件,即高编程温度(230°C)和低向列相到各向同性转变温度(60°C),以实现热稳定和机械稳定的致动器。