Suppr超能文献

基于回声状态网络计算预测混沌半导体激光器的动力学行为

Predicting the dynamical behaviors for chaotic semiconductor lasers by reservoir computing.

作者信息

Li Xiao-Zhou, Sheng Bin, Zhang Man

出版信息

Opt Lett. 2022 Jun 1;47(11):2822-2825. doi: 10.1364/OL.459638.

Abstract

We demonstrate the successful prediction of the continuous intensity time series and reproduction of the underlying dynamical behaviors for a chaotic semiconductor laser by reservoir computing. The laser subject to continuous-wave optical injection is considered using the rate-equation model. A reservoir network is constructed and trained using over 2 × 10 data points sampled every 1.19 ps from the simulated chaotic intensity time series. Upon careful optimization of the reservoir parameters, the future evolution of the continuous intensity time series can be accurately predicted for a time duration of longer than 0.6 ns, which is six times the reciprocal of the relaxation resonance frequency of the laser. Moreover, we demonstrate for the first time, to the best of our knowledge, that the predicted intensity time series allows for accurate reproduction of the chaotic dynamical behaviors, including the microwave power spectrum, probability density function, and the chaotic attractor. In general, the demonstrated approach offers a relatively high flexibility in the choice of reservoir parameters according to the simulation results, and it provides new insights into the learning and prediction of semiconductor laser dynamics based on measured intensity time series.

摘要

我们通过储层计算展示了对连续强度时间序列的成功预测以及对混沌半导体激光器潜在动力学行为的再现。使用速率方程模型来考虑受连续波光注入的激光器。构建了一个储层网络,并使用从模拟混沌强度时间序列中每隔1.19皮秒采样的超过2×10个数据点进行训练。在仔细优化储层参数后,对于持续时间超过0.6纳秒(这是激光器弛豫共振频率倒数的六倍)的连续强度时间序列的未来演化可以被准确预测。此外,据我们所知,我们首次证明预测的强度时间序列能够准确再现混沌动力学行为,包括微波功率谱、概率密度函数和混沌吸引子。一般来说,所展示的方法在根据模拟结果选择储层参数方面具有相对较高的灵活性,并且为基于测量强度时间序列的半导体激光器动力学的学习和预测提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验