Suppr超能文献

磷脂酰肌醇转移蛋白/平面细胞极性轴通过支持核周迁移来调节新皮层形态发生。

Phosphatidylinositol transfer protein/planar cell polarity axis regulates neocortical morphogenesis by supporting interkinetic nuclear migration.

机构信息

Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA.

Department of Molecular & Cellular Medicine, Texas A&M Health Science Center, College Station, TX 77843, USA; Department of Biochemistry & Biophysics, Texas A&M University, College Station, TX 77843, USA; Department of Chemistry, Texas A&M University, College Station, TX 77843, USA.

出版信息

Cell Rep. 2022 May 31;39(9):110869. doi: 10.1016/j.celrep.2022.110869.

Abstract

The neocortex expands explosively during embryonic development. The earliest populations of neural stem cells (NSCs) form a thin pseudostratified epithelium whose contour determines that of the adult neocortex. Neocortical complexity is accompanied by disproportional expansion of the NSC layer in its tangential dimension to increase tissue surface area. How such disproportional expansion is controlled remains unknown. We demonstrate that a phosphatidylinositol transfer protein (PITP)/non-canonical Wnt planar cell polarity (ncPCP) signaling axis promotes tangential expansion of developing neocortex. PITP signaling supports trafficking of specific ncPCP receptors from the NSC Golgi system to potentiate actomyosin activity important for cell-cycle-dependent interkinetic nuclear migration (IKNM). In turn, IKNM promotes lateral dispersion of newborn NSCs and tangential growth of the cerebral wall. These findings clarify functional roles for IKNM in NSC biology and identify tissue dysmorphogenesis resulting from impaired IKNM as a factor in autism risk, developmental brain disabilities, and neural tube birth defects.

摘要

大脑皮层在胚胎发育过程中呈爆炸式扩张。最早的神经干细胞(NSC)群体形成一层薄的假复层上皮,其轮廓决定了成年大脑皮层的形状。大脑皮层的复杂性伴随着 NSC 层在切向维度上不成比例的扩张,以增加组织表面积。这种不成比例的扩张是如何被控制的仍然未知。我们证明,磷酸肌醇转移蛋白(PITP)/非经典 Wnt 平面细胞极性(ncPCP)信号轴促进了发育中的大脑皮层的切向扩张。PITP 信号支持特定的 ncPCP 受体从 NSC 高尔基系统的运输,以增强肌动球蛋白活性,这对于细胞周期依赖性核间迁移(IKNM)至关重要。反过来,IKNM 促进了新生 NSC 的侧向扩散和大脑壁的切向生长。这些发现阐明了 IKNM 在 NSC 生物学中的功能作用,并确定了由于 IKNM 受损导致的组织畸形发生是自闭症风险、发育性脑残疾和神经管出生缺陷的一个因素。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验