Institute of Clinical Neurobiology, University Hospital Wuerzburg, 97078, Würzburg, Germany.
Department of Biotechnology and Biophysics, Biocenter, Julius-Maximilians-University Wuerzburg, 97074, Würzburg, Germany.
Transl Neurodegener. 2022 Jun 2;11(1):31. doi: 10.1186/s40035-022-00304-2.
Axonal degeneration and defects in neuromuscular neurotransmission represent a pathological hallmark in spinal muscular atrophy (SMA) and other forms of motoneuron disease. These pathological changes do not only base on altered axonal and presynaptic architecture, but also on alterations in dynamic movements of organelles and subcellular structures that are not necessarily reflected by static histopathological changes. The dynamic interplay between the axonal endoplasmic reticulum (ER) and ribosomes is essential for stimulus-induced local translation in motor axons and presynaptic terminals. However, it remains enigmatic whether the ER and ribosome crosstalk is impaired in the presynaptic compartment of motoneurons with Smn (survival of motor neuron) deficiency that could contribute to axonopathy and presynaptic dysfunction in SMA.
Using super-resolution microscopy, proximity ligation assay (PLA) and live imaging of cultured motoneurons from a mouse model of SMA, we investigated the dynamics of the axonal ER and ribosome distribution and activation.
We observed that the dynamic remodeling of ER was impaired in axon terminals of Smn-deficient motoneurons. In addition, in axon terminals of Smn-deficient motoneurons, ribosomes failed to respond to the brain-derived neurotrophic factor stimulation, and did not undergo rapid association with the axonal ER in response to extracellular stimuli.
These findings implicate impaired dynamic interplay between the ribosomes and ER in axon terminals of motoneurons as a contributor to the pathophysiology of SMA and possibly also other motoneuron diseases.
轴突变性和神经肌肉递质传递缺陷是脊髓性肌萎缩症(SMA)和其他运动神经元疾病的病理标志。这些病理变化不仅基于轴突和突触前结构的改变,还基于细胞器和亚细胞结构的动态运动的改变,而这些改变不一定反映在静态组织病理学变化中。轴突内质网(ER)和核糖体之间的动态相互作用对于运动轴突和突触前末端的刺激诱导局部翻译至关重要。然而,Smn(运动神经元存活)缺陷的运动神经元突触前区 ER 和核糖体串扰是否受损,这可能导致轴突病和 SMA 中的突触前功能障碍,仍然是一个谜。
使用超分辨率显微镜、临近连接分析(PLA)和 SMA 小鼠模型培养的运动神经元的活细胞成像,我们研究了轴突 ER 和核糖体分布和激活的动力学。
我们观察到 ER 的动态重塑在 Smn 缺陷运动神经元的轴突末端受损。此外,在 Smn 缺陷运动神经元的轴突末端,核糖体无法对脑源性神经营养因子的刺激作出反应,并且在响应细胞外刺激时,不会与轴突 ER 快速结合。
这些发现表明,运动神经元轴突末端的核糖体和 ER 之间的动态相互作用受损,可能是 SMA 以及其他运动神经元疾病的病理生理学的一个贡献因素。