Wuest Kilian N R, Lu Hongxu, Thomas Donald S, Goldmann Anja S, Stenzel Martina H, Barner-Kowollik Christopher
Macromolecular Architectures, Institut für Technische Chemie und Polymerchemie, Karlsruhe Institute of Technology (KIT), Engesserstr. 18, 76128 Karlsruhe, Germany.
Centre for Advanced Macromolecular Design (CAMD), University of New South Wales (UNSW), Sydney, NSW 2052, Australia.
ACS Macro Lett. 2017 Oct 17;6(10):1168-1174. doi: 10.1021/acsmacrolett.7b00659. Epub 2017 Oct 4.
We introduce the light-induced collapse of single glycopolymer chains in water generating fluorescent glyco single-chain nanoparticles (SCNPs) and their subsequent functionalization onto nanodiamonds. The glycopolymer precursors are prepared by polymerizing an acetylated mannose-based methacrylate monomer followed by a deprotection and postpolymerization functionalization step, introducing profluorescent photoactive tetrazole groups and furan-protected maleimide moieties. Subsequent UV irradiation in highly diluted aqueous solution triggers intramolecular tetrazole-mediated cycloadditions, yielding glyco SCNPs featuring fluorescence as well as lectin binding properties. The obtained SCNPs are coated onto nanodiamonds by adsorption, and the obtained hybrid nanoparticles are in depth characterized in terms of size, functionality, and bioactivity. Different coating densities are achieved by altering the SCNP concentration. The prepared nanoparticles are nontoxic in mouse RAW 264.7 macrophages. Furthermore, the fluorescence of the SCNPs can be exploited to image the SCNP-coated nanodiamonds in macrophage cells via confocal fluorescence microscopy.
我们介绍了在水中光诱导单糖聚合物链塌缩生成荧光糖单链纳米颗粒(SCNPs),以及随后将其功能化到纳米金刚石上的过程。糖聚合物前体通过聚合基于乙酰化甘露糖的甲基丙烯酸酯单体,然后进行脱保护和聚合后功能化步骤来制备,引入了前荧光光活性四唑基团和呋喃保护的马来酰亚胺部分。随后在高度稀释的水溶液中进行紫外线照射,引发分子内四唑介导的环加成反应,生成具有荧光以及凝集素结合特性的糖SCNPs。通过吸附将获得的SCNPs包覆在纳米金刚石上,并从尺寸、功能和生物活性方面对所得的杂化纳米颗粒进行深入表征。通过改变SCNP浓度可实现不同的包覆密度。所制备的纳米颗粒在小鼠RAW 264.7巨噬细胞中无毒。此外,可利用SCNPs的荧光通过共聚焦荧光显微镜对巨噬细胞中的SCNP包覆纳米金刚石进行成像。