Suppr超能文献

在水相及有氧条件下通过可持续的铃木缩聚反应合成共轭聚合物

Synthesis of Conjugated Polymers by Sustainable Suzuki Polycondensation in Water and under Aerobic Conditions.

作者信息

Sanzone Alessandro, Calascibetta Adiel, Monti Mauro, Mattiello Sara, Sassi Mauro, Corsini Francesca, Griffini Gianmarco, Sommer Michael, Beverina Luca

机构信息

Department of Materials Science and INSTM, University of Milano-Bicocca, Via R. Cozzi, 55, 20125 Milano, Italy.

Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy.

出版信息

ACS Macro Lett. 2020 Aug 18;9(8):1167-1171. doi: 10.1021/acsmacrolett.0c00495. Epub 2020 Jul 31.

Abstract

Conjugated semiconducting polymers are key materials enabling plastic (opto)electronic devices. Research in the field has a generally strong focus on the constant improvement of backbone structure and the resulting properties. Comparatively fewer studies are devoted to improving the sustainability of the synthetic route that leads to a material under scrutiny. Exemplified by the two established and commercially available luminescent polymers poly(9,9-dioctylfluorene--bithiophene) (PF8T2) and poly(9,9-dioctylfluorene--benzothiadiazole) (PF8BT), this work describes the first examples of efficient Suzuki-Miyaura polycondensations in water, under ambient environment, with minimal amount of organic solvent and with moderate heating. The synthetic approach enables a reduction of the E-factor (mass of organic waste/mass of product) by 1 order of magnitude, without negatively affecting molecular weight, dispersity, chemical structure, or photochemical stability of PF8T2 or PF8BT.

摘要

共轭半导体聚合物是实现塑料(光)电子器件的关键材料。该领域的研究通常非常注重主链结构的不断改进及其所带来的性能。相比之下,致力于改善导致受审查材料的合成路线可持续性的研究较少。以两种已确立且可商购的发光聚合物聚(9,9-二辛基芴-联噻吩)(PF8T2)和聚(9,9-二辛基芴-苯并噻二唑)(PF8BT)为例,这项工作描述了在环境条件下、使用最少有机溶剂并适度加热的情况下,在水中高效进行铃木-宫浦缩聚反应的首个实例。这种合成方法能够将E因子(有机废物质量/产物质量)降低1个数量级,而不会对PF8T2或PF8BT的分子量、分散度、化学结构或光化学稳定性产生负面影响。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验