Suppr超能文献

fingERNAt—一种用于高通量分析核酸-配体相互作用的新工具。

fingeRNAt-A novel tool for high-throughput analysis of nucleic acid-ligand interactions.

机构信息

Laboratory of Bioinformatics and Protein Engineering, International Institute of Molecular and Cell Biology in Warsaw, Warsaw, Poland.

出版信息

PLoS Comput Biol. 2022 Jun 2;18(6):e1009783. doi: 10.1371/journal.pcbi.1009783. eCollection 2022 Jun.

Abstract

Computational methods play a pivotal role in drug discovery and are widely applied in virtual screening, structure optimization, and compound activity profiling. Over the last decades, almost all the attention in medicinal chemistry has been directed to protein-ligand binding, and computational tools have been created with this target in mind. With novel discoveries of functional RNAs and their possible applications, RNAs have gained considerable attention as potential drug targets. However, the availability of bioinformatics tools for nucleic acids is limited. Here, we introduce fingeRNAt-a software tool for detecting non-covalent interactions formed in complexes of nucleic acids with ligands. The program detects nine types of interactions: (i) hydrogen and (ii) halogen bonds, (iii) cation-anion, (iv) pi-cation, (v) pi-anion, (vi) pi-stacking, (vii) inorganic ion-mediated, (viii) water-mediated, and (ix) lipophilic interactions. However, the scope of detected interactions can be easily expanded using a simple plugin system. In addition, detected interactions can be visualized using the associated PyMOL plugin, which facilitates the analysis of medium-throughput molecular complexes. Interactions are also encoded and stored as a bioinformatics-friendly Structural Interaction Fingerprint (SIFt)-a binary string where the respective bit in the fingerprint is set to 1 if a particular interaction is present and to 0 otherwise. This output format, in turn, enables high-throughput analysis of interaction data using data analysis techniques. We present applications of fingeRNAt-generated interaction fingerprints for visual and computational analysis of RNA-ligand complexes, including analysis of interactions formed in experimentally determined RNA-small molecule ligand complexes deposited in the Protein Data Bank. We propose interaction fingerprint-based similarity as an alternative measure to RMSD to recapitulate complexes with similar interactions but different folding. We present an application of interaction fingerprints for the clustering of molecular complexes. This approach can be used to group ligands that form similar binding networks and thus have similar biological properties. The fingeRNAt software is freely available at https://github.com/n-szulc/fingeRNAt.

摘要

计算方法在药物发现中起着关键作用,广泛应用于虚拟筛选、结构优化和化合物活性分析。在过去的几十年中,几乎所有的药物化学研究都集中在蛋白质 - 配体结合上,并且已经创建了针对该目标的计算工具。随着功能 RNA 的新发现及其可能的应用,RNA 作为潜在的药物靶点引起了相当大的关注。然而,用于核酸的生物信息学工具的可用性有限。在这里,我们介绍了 fingeRNAt,这是一种用于检测核酸与配体形成的非共价相互作用的软件工具。该程序检测九种类型的相互作用:(i)氢键和(ii)卤键,(iii)阳离子 - 阴离子,(iv)π-阳离子,(v)π-阴离子,(vi)π-堆积,(vii)无机离子介导,(viii)水介导和(ix)疏水性相互作用。然而,通过简单的插件系统可以轻松扩展检测到的相互作用的范围。此外,使用相关的 PyMOL 插件可以可视化检测到的相互作用,这有助于分析中高通量的分子复合物。相互作用也被编码并存储为结构相互作用指纹(SIFt)的生物信息学友好格式 - 一个二进制字符串,其中指纹中的相应位设置为 1,如果存在特定相互作用,否则设置为 0。这种输出格式反过来又可以使用数据分析技术对相互作用数据进行高通量分析。我们展示了 fingeRNAt 生成的相互作用指纹在 RNA-配体复合物的可视化和计算分析中的应用,包括对在蛋白质数据库中实验确定的 RNA-小分子配体复合物中形成的相互作用的分析。我们提出基于相互作用指纹的相似性作为 RMSD 的替代度量来重现具有相似相互作用但不同折叠的复合物。我们展示了相互作用指纹在分子复合物聚类中的应用。这种方法可用于对形成相似结合网络的配体进行分组,从而具有相似的生物学特性。fingeRNAt 软件可在 https://github.com/n-szulc/fingeRNAt 上免费获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/bb98/9197077/4534326c2ca4/pcbi.1009783.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验