Laboratory of Protein Structure, International Institute of Molecular and Cell Biology, 02-109 Warsaw, Poland.
Department of Microbiology, Cornell University, Ithaca, NY 14853, USA.
Mol Cell. 2022 Jul 21;82(14):2618-2632.e7. doi: 10.1016/j.molcel.2022.05.005. Epub 2022 Jun 1.
Tn7 is a bacterial transposon with relatives containing element-encoded CRISPR-Cas systems mediating RNA-guided transposon insertion. Here, we present the 2.7 Å cryoelectron microscopy structure of prototypic Tn7 transposase TnsB interacting with the transposon end DNA. When TnsB interacts across repeating binding sites, it adopts a beads-on-a-string architecture, where the DNA-binding and catalytic domains are arranged in a tiled and intertwined fashion. The DNA-binding domains form few base-specific contacts leading to a binding preference that requires multiple weakly conserved sites at the appropriate spacing to achieve DNA sequence specificity. TnsB binding imparts differences in the global structure of the protein-bound DNA ends dictated by the spacing or overlap of binding sites explaining functional differences in the left and right ends of the element. We propose a model of the strand-transfer complex in which the terminal TnsB molecule is rearranged so that its catalytic domain is in a position conducive to transposition.
Tn7 是一种带有元件编码的 CRISPR-Cas 系统的细菌转座子,介导 RNA 指导的转座子插入。在这里,我们展示了 2.7Å 的原型 Tn7 转座酶 TnsB 与转座子末端 DNA 相互作用的冷冻电镜结构。当 TnsB 在重复结合位点上相互作用时,它采用串珠式结构,其中 DNA 结合和催化结构域以平铺和交织的方式排列。DNA 结合结构域形成很少的碱基特异性接触,导致结合偏好,需要在适当的间隔处具有多个弱保守的位点才能实现 DNA 序列特异性。TnsB 结合赋予了结合位点的间隔或重叠决定的蛋白结合 DNA 末端的整体结构差异,解释了元件左右两端的功能差异。我们提出了一个链转移复合物的模型,其中末端 TnsB 分子被重新排列,使其催化结构域处于有利于转座的位置。