Molecular Cell Biology, Salk Institute for Biological Studies, La Jolla, CA 92037, USA.
Mol Cell. 2022 Jun 16;82(12):2190-2200. doi: 10.1016/j.molcel.2022.05.007. Epub 2022 Jun 1.
Protein phosphorylation is a reversible post-translational modification. Nine of the 20 natural amino acids in proteins can be phosphorylated, but most of what we know about the roles of protein phosphorylation has come from studies of serine, threonine, and tyrosine phosphorylation. Much less is understood about the phosphorylation of histidine, lysine, arginine, cysteine, aspartate, and glutamate, so-called non-canonical phosphorylations. Phosphohistidine (pHis) was discovered 60 years ago as a mitochondrial enzyme intermediate; since then, evidence for the existence of histidine kinases and phosphohistidine phosphatases has emerged, together with examples where protein function is regulated by reversible histidine phosphorylation. pHis is chemically unstable and has thus been challenging to study. However, the recent development of tools for studying pHis has accelerated our understanding of the multifaceted functions of histidine phosphorylation, revealing a large number of proteins that are phosphorylated on histidine and implicating pHis in a wide range of cellular processes.
蛋白质磷酸化是一种可逆的翻译后修饰。蛋白质中的 20 种天然氨基酸中有 9 种可以被磷酸化,但我们对蛋白质磷酸化作用的了解大多来自丝氨酸、苏氨酸和酪氨酸磷酸化的研究。关于组氨酸、赖氨酸、精氨酸、半胱氨酸、天冬氨酸和谷氨酸的磷酸化,即所谓的非典型磷酸化,我们的了解要少得多。磷酸组氨酸(pHis)是 60 年前作为线粒体酶中间产物发现的;从那时起,已经出现了组氨酸激酶和磷酸组氨酸磷酸酶存在的证据,以及蛋白质功能受可逆组氨酸磷酸化调节的例子。pHis 化学性质不稳定,因此研究起来具有挑战性。然而,研究 pHis 的工具的最新发展加速了我们对组氨酸磷酸化多方面功能的理解,揭示了大量在组氨酸上磷酸化的蛋白质,并将 pHis 与广泛的细胞过程联系起来。