Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China; University of Chinese Academy of Sciences, Beijing, 100049, PR China.
Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510006, China; Laboratory of Biomass Bio-chemical Conversion, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou, 510640, PR China; Guangdong Key Laboratory of New and Renewable Energy Research and Development, Guangzhou, 510640, PR China.
Chemosphere. 2022 Sep;303(Pt 3):135127. doi: 10.1016/j.chemosphere.2022.135127. Epub 2022 May 30.
This study sought to investigate the effect of bioaugmentation on batch anaerobic digestion of chicken manure. The digestion performance with and without bioaugmentation and bioaugmented efficiency under different dosages were compared. The results demonstrated that bioaugmentation increased the methane yield and shortened the methane production time in batch reactors. Compared to the un-bioaugmented control, the methane yield of bioaugmented digesters was increased by 1.2-, 1.7-, 2.2-, 3.4-, and 3.6-fold at addition ratios of 0.07, 0.14, 0.21, 0.27, and 0.34 g VS /g VS, respectively. However, higher bioaugmentation doses (0.34 g VS/g VS) did not exhibit significantly improved bioaugmentation efficiency, thus, the recommended dose is 0.27 g VS/g VS for biomethane conversion of CM. Moreover, whole genome pyrosequencing revealed that Methanoculleus and Methanobrevibacter predominated the non-bioaugmentation digesters, whereas Methanothrix, Methanobacterium, and Methanomassiliicoccus were the dominant methanogens in bioaugmentation digesters. The increased methane may be explained by an increase in the Methanothrix population, which accelerated acetic acid degradation. With bioaugmentation the mainly methanogenic pathways have become more diverse. From gene function perspective, bioaugmentation enhanced metabolic activities in digestor which function better in metabolism.
本研究旨在探讨生物强化对鸡粪批式厌氧消化的影响。比较了有无生物强化以及不同剂量下生物强化效率下的消化性能。结果表明,生物强化提高了批式反应器中的甲烷产量并缩短了甲烷产生时间。与未生物强化的对照组相比,添加比为 0.07、0.14、0.21、0.27 和 0.34 g VS/g VS 时,生物强化消化器的甲烷产量分别增加了 1.2、1.7、2.2、3.4 和 3.6 倍。然而,更高的生物强化剂量(0.34 g VS/g VS)并没有表现出明显改善的生物强化效率,因此,对于鸡粪的生物甲烷转化,推荐剂量为 0.27 g VS/g VS。此外,全基因组焦磷酸测序显示,在未生物强化的消化器中,Methanoculleus 和 Methanobrevibacter 占优势,而 Methanothrix、Methanobacterium 和 Methanomassiliicoccus 是生物强化消化器中的主要产甲烷菌。甲烷产量的增加可能是由于 Methanothrix 种群的增加,从而加速了乙酸的降解。通过生物强化,主要的产甲烷途径变得更加多样化。从基因功能的角度来看,生物强化增强了消化器中的代谢活性,使其在代谢方面表现得更好。