Suppr超能文献

MetaGS:一种使用汇总统计数据在人群中准确推断和组合 SNP 效应的方法。

MetaGS: an accurate method to impute and combine SNP effects across populations using summary statistics.

机构信息

Agriculture Victoria, AgriBio, Centre for AgriBiosciences, Bundoora, VIC, 3083, Australia.

Department of Animal Breeding and Genetics, Interbull Centre, Swedish University of Agricultural Sciences, Box 7023, 750 07, Uppsala, Sweden.

出版信息

Genet Sel Evol. 2022 Jun 2;54(1):37. doi: 10.1186/s12711-022-00725-7.

Abstract

BACKGROUND

Meta-analysis describes a category of statistical methods that aim at combining the results of multiple studies to increase statistical power by exploiting summary statistics. Different industries that use genomic prediction do not share their raw data due to logistic or privacy restrictions, which can limit the size of their reference populations and creates a need for a practical meta-analysis method.

RESULTS

We developed a meta-analysis, named MetaGS, that duplicates the results of multi-trait best linear unbiased prediction (mBLUP) analysis without accessing raw data. MetaGS exploits the correlations among different populations to produce more accurate population-specific single nucleotide polymorphism (SNP) effects. The method improves SNP effect estimations for a given population depending on its relations to other populations. MetaGS was tested on milk, fat and protein yield data of Australian Holstein and Jersey cattle and it generated very similar genomic estimated breeding values to those produced using the mBLUP method for all traits in both breeds. One of the major difficulties when combining SNP effects across populations is the use of different variants for the populations, which limits the applications of meta-analysis in practice. We solved this issue by developing a method to impute missing summary statistics without using raw data. Our results showed that imputing summary statistics can be done with high accuracy (r > 0.9) even when more than 70% of the SNPs were missing with a minimal effect on prediction accuracy.

CONCLUSIONS

We demonstrated that MetaGS can replace the mBLUP model when raw data cannot be shared, which can lead to more flexible collaborations compared to the single-trait BLUP model.

摘要

背景

元分析描述了一类统计方法,旨在通过利用汇总统计数据来合并多个研究的结果,以提高统计效力。由于物流或隐私限制,使用基因组预测的不同行业不共享其原始数据,这会限制参考群体的规模,并需要一种实用的元分析方法。

结果

我们开发了一种名为 MetaGS 的元分析方法,该方法无需访问原始数据即可复制多性状最佳线性无偏预测(mBLUP)分析的结果。MetaGS 利用不同群体之间的相关性来产生更准确的特定于群体的单核苷酸多态性(SNP)效应。该方法根据给定群体与其他群体的关系,改善了其 SNP 效应估计。MetaGS 对澳大利亚荷斯坦牛和泽西牛的牛奶、脂肪和蛋白质产量数据进行了测试,它为两个品种的所有性状生成的基因组估计育种值与使用 mBLUP 方法生成的非常相似。在跨群体合并 SNP 效应时面临的一个主要困难是不同群体使用不同的变体,这限制了元分析在实践中的应用。我们通过开发一种无需使用原始数据即可对缺失汇总统计数据进行推断的方法解决了这个问题。我们的结果表明,即使缺失了超过 70%的 SNP,也可以非常准确地(r > 0.9)推断缺失的汇总统计数据,而对预测准确性的影响最小。

结论

我们证明了当无法共享原始数据时,MetaGS 可以替代 mBLUP 模型,与单性状 BLUP 模型相比,这可以带来更灵活的合作。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/6f0f/9164759/6db5fcf12a4e/12711_2022_725_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验