Suppr超能文献

利用多群体参考和整合 GWAS 结果进行牛奶脂肪酸成分的基因组预测的可靠性。

Reliability of genomic prediction for milk fatty acid composition by using a multi-population reference and incorporating GWAS results.

机构信息

Department of Molecular Biology and Genetics, Center for Quantitative Genetics and Genomics, Aarhus University, Blichers Allé 20, P.O. Box 50, 8830, Tjele, Denmark.

Animal Breeding and Genomics Centre, Wageningen University, P.O. Box 338, 6700 AH, Wageningen, The Netherlands.

出版信息

Genet Sel Evol. 2019 Apr 27;51(1):16. doi: 10.1186/s12711-019-0460-z.

Abstract

BACKGROUND

Large-scale phenotyping for detailed milk fatty acid (FA) composition is difficult due to expensive and time-consuming analytical techniques. Reliability of genomic prediction is often low for traits that are expensive/difficult to measure and for breeds with a small reference population size. An effective method to increase reference population size could be to combine datasets from different populations. Prediction models might also benefit from incorporation of information on the biological underpinnings of quantitative traits. Genome-wide association studies (GWAS) show that genomic regions on Bos taurus chromosomes (BTA) 14, 19 and 26 underlie substantial proportions of the genetic variation in milk FA traits. Genomic prediction models that incorporate such results could enable improved prediction accuracy in spite of limited reference population sizes. In this study, we combine gas chromatography quantified FA samples from the Chinese, Danish and Dutch Holstein populations and implement a genomic feature best linear unbiased prediction (GFBLUP) model that incorporates variants on BTA14, 19 and 26 as genomic features for which random genetic effects are estimated separately. Prediction reliabilities were compared to those estimated with traditional GBLUP models.

RESULTS

Predictions using a multi-population reference and a traditional GBLUP model resulted in average gains in prediction reliability of 10% points in the Dutch, 8% points in the Danish and 1% point in the Chinese populations compared to predictions based on population-specific references. Compared to the traditional GBLUP, implementation of the GFBLUP model with a multi-population reference led to further increases in prediction reliability of up to 38% points in the Dutch, 23% points in the Danish and 13% points in the Chinese populations. Prediction reliabilities from the GFBLUP model were moderate to high across the FA traits analyzed.

CONCLUSIONS

Our study shows that it is possible to predict genetic merits for milk FA traits with reasonable accuracy by combining related populations of a breed and using models that incorporate GWAS results. Our findings indicate that international collaborations that facilitate access to multi-population datasets could be highly beneficial to the implementation of genomic selection for detailed milk composition traits.

摘要

背景

由于昂贵且耗时的分析技术,大规模表型分析详细的牛奶脂肪酸(FA)组成是困难的。对于昂贵/难以测量的性状和参考群体规模较小的品种,基因组预测的可靠性通常较低。增加参考群体规模的有效方法可能是结合来自不同群体的数据。预测模型也可能受益于纳入数量性状生物学基础的信息。全基因组关联研究(GWAS)表明,牛染色体(BTA)14、19 和 26 上的基因组区域是牛奶 FA 性状遗传变异的重要组成部分。纳入这些结果的基因组预测模型可以在参考群体规模有限的情况下提高预测准确性。在这项研究中,我们结合了来自中国、丹麦和荷兰荷斯坦牛群体的气相色谱定量 FA 样本,并实施了基因组特征最佳线性无偏预测(GFBLUP)模型,该模型将 BTA14、19 和 26 上的变体作为单独估计随机遗传效应的基因组特征。将预测可靠性与传统 GBLUP 模型的预测可靠性进行了比较。

结果

与基于特定群体的参考相比,使用多群体参考和传统 GBLUP 模型进行预测,荷兰、丹麦和中国群体的预测可靠性平均提高了 10%、8%和 1%。与传统 GBLUP 相比,使用多群体参考实施 GFBLUP 模型可使荷兰、丹麦和中国群体的预测可靠性分别提高高达 38%、23%和 13%。GFBLUP 模型对分析的 FA 性状的预测可靠性从中等到高度。

结论

我们的研究表明,通过结合一个品种的相关群体并使用纳入 GWAS 结果的模型,可以合理准确地预测牛奶 FA 性状的遗传优势。我们的研究结果表明,促进多群体数据集访问的国际合作对于实施详细牛奶成分性状的基因组选择非常有益。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4761/6487064/cc48748d7165/12711_2019_460_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验